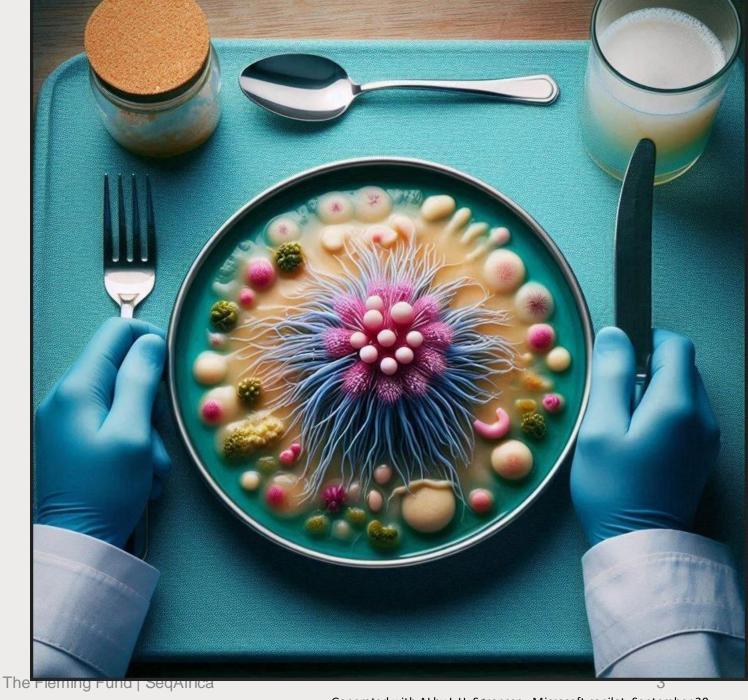
Whole Genome Sequencing and Bioinformatics SeqAfrica Training

4-7th March 2025 CHSU, Lilongwe

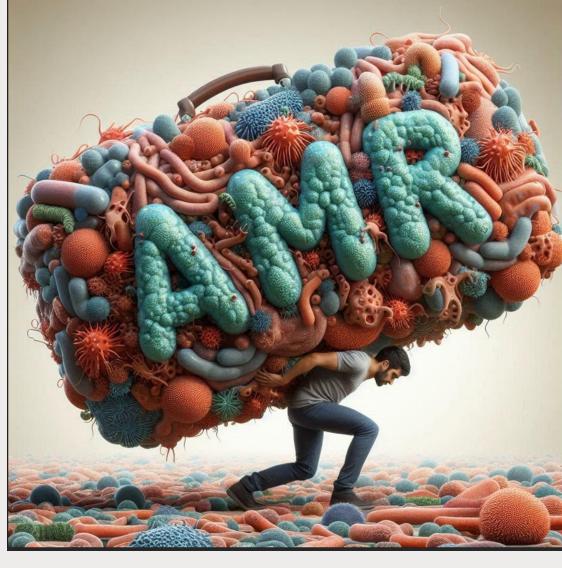
Marco van Zwetselaar Niamh Lacy-Roberts Day 3



Introduction to Antimicrobial Resistance (AMR)

Introduction to antimicrobial resistance (AMR)

- AMR is when bacteria, viruses, fungi or parasites no longer respond to antimicrobial medicines.
- As a result of drug resistance, antibiotics and other antimicrobial medicines become ineffective and infections become difficult or impossible to treat.
- Increases the risk of disease spread, severe illness, disability and death.



Generated with AI by L.H. Sørensen · Microsoft copilot · September 30,

2024

Fleming Fund Regional Grants Burden of AMR

- 1,2 million deaths were directly attributed and 4,9 million associated with AMR in 2021.¹
- Death attributed to AMR in people above 5 years increase across all regions between 1990-2021, except in Central and Western Europe.¹
- Main drivers thought to be Antimicrobial usage and lack of antimicrobial stewardship.²
- Low and middle income countries are the affected most by AMR, but there are major disparities in AMR reporting.¹

¹⁾ Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050, Naghavi, Mohsen et al. The Lancet, Volume 404, Issue 10459, 1199 – 1226

DANMAP

The Danish Integrated Antimicrobial Resistance Monitoring and Research Programme

About Press releases

Reports

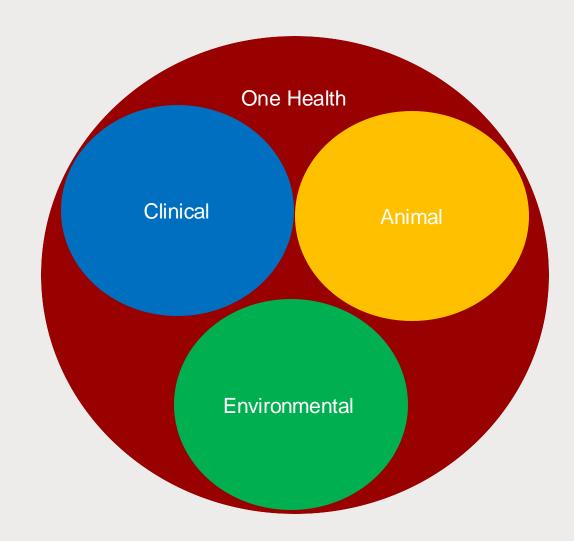
Seminars

Contact

DANMAP

DANMAP is the Danish Programme for surveillance of antimicrobial consumption and resistance in bacteria from food animals, food and humans.

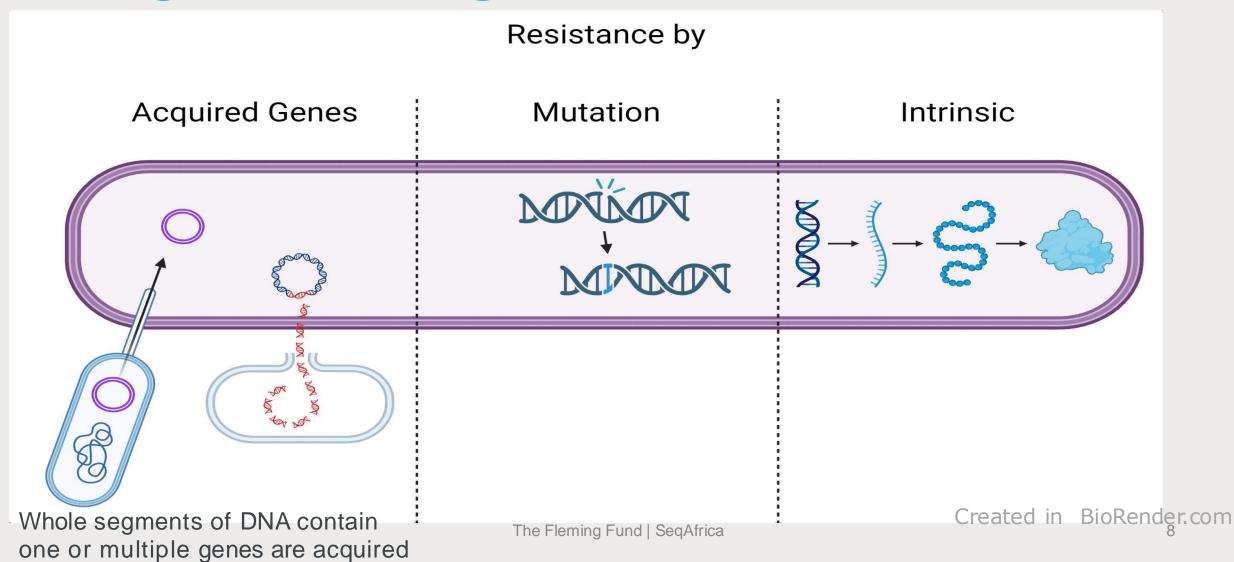
REPORT 2023


LATEST PRESS RELEASE

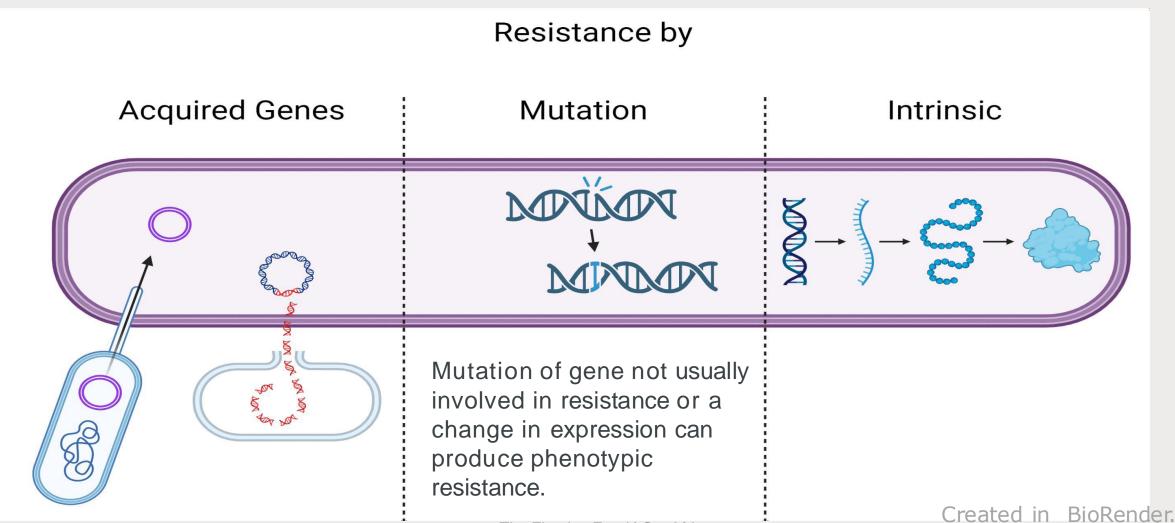
https://www.danmap.org/

AMR in Denmark

- Reports on:
 - Antimicrobial consumption in Humans.
 - Antimicrobial consumption in Animals.
 - Resistance in human pathogens.
 - Resistance in indicator bacteria from animal side.
 - Zoonotic pathogens.
 - Animal pathogens.
 - General trends compared to previous years.
- Collaboration with farmers based on voluntary systems.

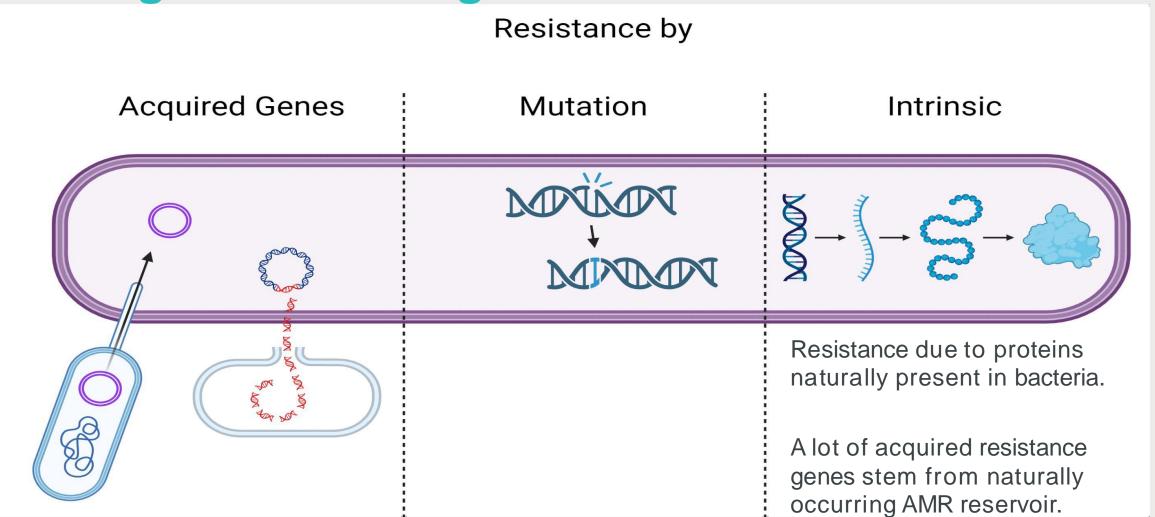

Importance of AMR surveillance

- AMR surveillance is crucial because it allows for
 - the early detection of resistant bacterial strains,
 - tracking trends in resistance patterns,
 - informing clinical decision-making,
 - guiding policy development,
 - enabling effective interventions to combat the growing threat of AMR
 - mitigating resistance development and spread.



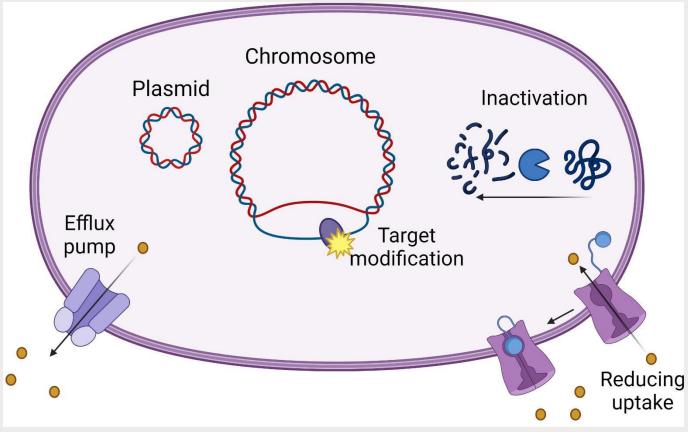
AMR genomic background

AMR genomic background



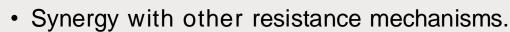
The Fleming Fund | SeqAfrica

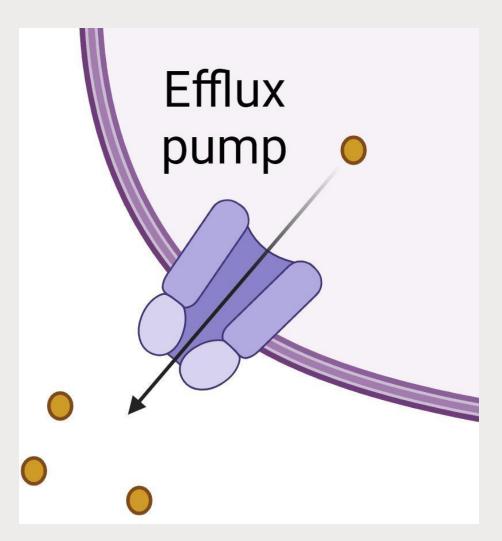
Created in BioRender.com


AMR genomic background

AMR in bacteria

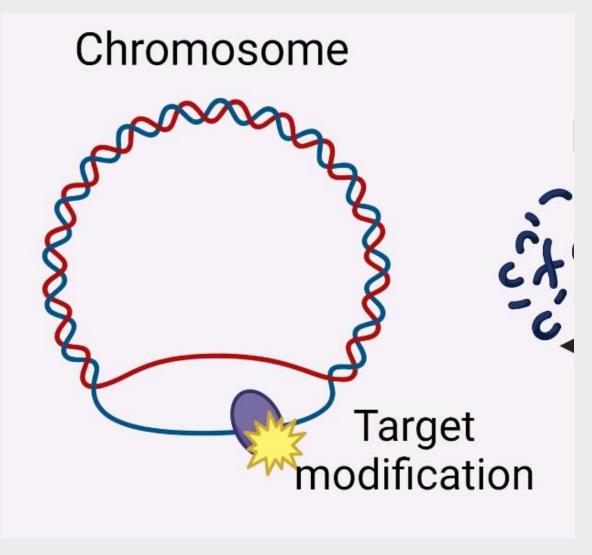
- AMR can arise by several mechanisms in the cell:
 - Efflux of antimicrobials
 - Enzyme inactivation
 - Target modification
 - Reducing uptake
- Phenotypic AMR can be a result of several mechanisms working in tandem.




Created in BioRender.com

Efflux pumps

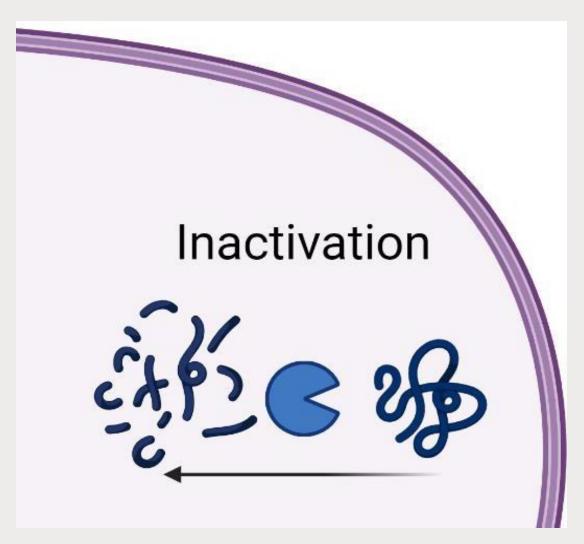
- Active transportation of antibiotics out of the cell.
- Can provide increased tolerance of wide variety of antibiotics, e.g. mdfA in E. coli exports a large number of toxins, including several classes of antimicrobials.
- Increased tolerance can be achieved by a number of mechanisms:
 - High expression
 - High copy number
 - Structural variation



Created in BioRender.com

Target modification

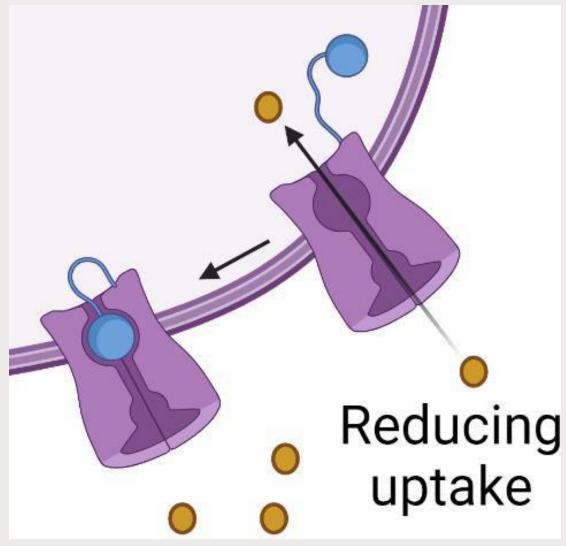
- Modification of target, either by a change in structure or specific motif can prevent binding of antibiotics.
- E.g. gyrase A in a number of pathogens (e.g. E. coli, S. enterica) prevents binding of fluoroquinolones such as ciprofloxacin.
- Several positions in the protein can confer or increase resistance.
- Gyrase A mutation very common in poultry production, and apparently stable (low cost of fitness)



Created in BioRender.com

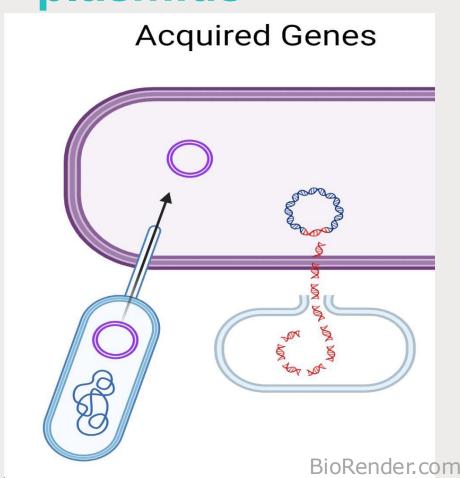
Inactivation

- Enzymes that break down antimicrobials.
- Includes classes of high priority to public health, such as Extended beta-lactamases (ESBL) genes CTX-M, SHV
- Includes antimicrobial classes of critical importance and last resort drugs in infections such as carbapenemases (e.g. NDM, OXA-48like, KPC)
- Acquired genes, overexpression of intrinsic genes, mutational gain-of-function in intrinsic genes.

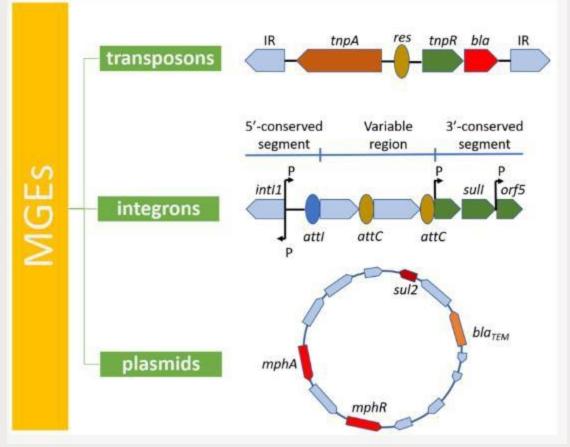


Created in BioRender.com

Reduced uptake


- Reduced uptake can happen by several mechanisms:
 - Mutational loss-of-function.
 - Reduced expression.
 - Natural (intrinsic) regulation.
- Synergy between reduced uptake and natural inactivation of enzymes (e.g. porA mutation in campylobacter increases carbapenem tolerance.

Horizontal gene transfer (HGT) - plasmids


- Plasmids are a major concern in the dissemination of acquired resistance genes.
- Plasmids can function as "genomic parasites", propagating through bacterial populations.
- Self-transmissible plasmids carry conjugative elements and can initiate their own transfer to other cells.
- Mobilizable plasmids carry mobilization genes, but are dependent on other sources of conjugation.
- Some investigation into plasmid transferring, despite lack of mobilization or conjugative elements.

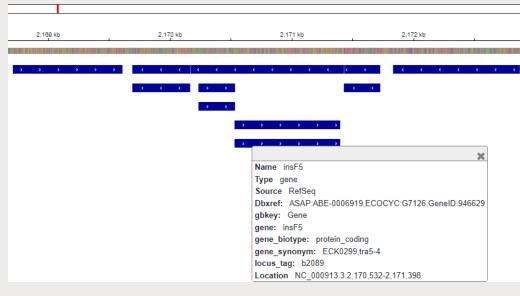
Other mobile genetic elements (MGE)

- Other modes of DNA transfer exists:
 - Transduction by phages
 - Natural transformation by integration of environmental DNA
- Frequency of specific HGTs vary between species.
- Smaller units of mobile genetic elements aid the transfer of AMR genes by integrating into plasmids.
 - Integrons.
 - Transposons.

Rozwadowski, M.; Gawel, D. Molecular Factors and Mechanisms Driving Multidrug Resistance in Uropathogenic *Escherichia coli*—An Update. *Genes* **2022**, *13*, 1397. https://doi.org/10.3390/genes13081397

Full genome annotation

- With Whole genome sequencing (WGS) we capture (almost) everything in the cell
 - Prokka: rapid prokaryotic genome annotation (<u>GitHub tseemann/prokka: Rapid prokaryotic genome annotation</u>)
 - ANNOVAR: Higher organisms (<u>ANNOVAR Documentation (openbioinformatics.org</u>))

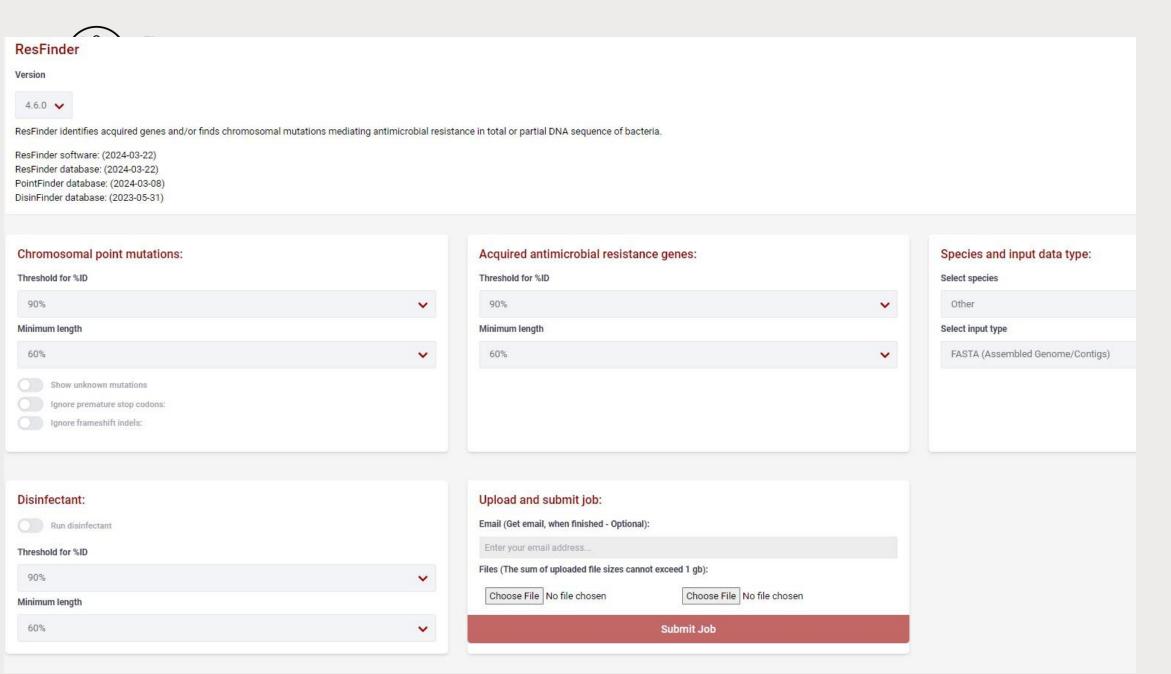

NCBI-PGAP: Prokaryotic annotation (<u>NCBI Prokaryotic Genome Annotation Pipeline</u>

(nih.gov)

 Predictive annotation: eggNOG-mapper (eggNOG-mapper (embl.de))

 These pipelines usually generate multiple output files, which can be used for further data handling or visualization

• There are multiple visualization tools, e.g. IGV, which can be installed locally or used online Fleming Fund | SeqAfrica



Annotation: AMR tools

- Resfinder
 - Developed at DTU
- AMRfinderplus
 - Developed at NCBI
- CARD
 - Developed at McMaster University
- Databases and search strategies depends on the tool.
- Curation is a major limiting factor in trustworthy and precise translation of genotype to phenotype.

Generated with AI by L.H. Sørensen · Microsoft copilot · October 1, 2024

EXAMPLECARD output:

Data was complete genome of E. Coli strain

44 hits in total!

Let us take a closer look

	RGI Criteria	ARO Term	SNP	Detection Criteria	AMR Gene Family	Drug Class	Resistance Mechanism	% identity of Matching Region	% Length of Reference Sequence
The FI	Perfect	acrB		protein homolog model	resistance-nodulation-cell division (RND) artibiotic efflux pump	fluoroquinolone antibiotic, cephalosporin, glycyfcydine, penam, tetracycline antibiotic, rifamydin antibiotic, phenicol antibiotic, disinfecting agents and antisoptics	artibiotic efflux	100.0	100.00
Reç	Perfect	Escherichia coli acrA		pratein homolog model	resistance-nodulation-cell division (RND) artibiotic efflux pump	fluoroquinolone antibiotic, cephalosporin, glycylcycline, penam, tetracycline antibiotic, rifamycin antibiotic, phenical antibiotic, disinfecting agents and arriseptica	artibiotic efflux	100.0	100.00
	Perfect	Escherichia coli emrE		protein homolog model	small multidrug resistance (SMR) antibiotic efflux pump	macrdide antibiotic	antibiotic efflux	100.0	100.00
	Perfect	kdp€		protein homolog model	kdpDE	aminoglycoside antibiotic	antibiotic efflux	100.0	100.00
	Perfect	msbA		pratein homolog model	ATP-binding cassette (ABC) antibiotic efflux pump	nitroimidazole antibiotic	arebiotic efflux	100,0	100.00
	Perfect	mdtG		pratein homolog model	major facilitator superfamily (MFS) antibiotic efflux pump	phosphonic acid antibiotic	artibiotic efflux	100.0	100.00
	Perfect	mdtH		pratein homolog model	major facilitator superfamily (MFS) antibiotic efflux pump	fluoroquinolone antibiotic	antibiotic efflux	100.0	100.00
	Perfect	H-NS		protein homolog model	major facilitator superfamily (MFS) antibiotic efflux pump, resistance-nodulation-cell division (RND) antibiotic efflux pump	macrolide artibiotic, fluoroquinolone artibiotic, cephalosporin, cephamycin, peram, tetracycline antibiotic	antibiotic efflux	100.0	100.00
	Perfect	rnarA		protein homolog model	resistance-nodulation-cell division (RND) arbibiotic efflux pump. General Bacterial Poin with reduced permeability to beta- lactains	fluoroquinalone antibiotic, monobactam, carbapenem, cephalosporin, glycylcydine, cephannyon, penam, tetracydine antibiotic, rifamyon antibiotic, phenicol antibiotic, penem, disinfecting agents and antiseptics	antibiotic efflux, reduced permeability to antibiotic	100.0	100.00
	Perfect	ugd		protein homolog model	pmr.phosphoethanolamine transferase	peptide artibiotic	antibiotic larget afteration	100,0	100.00
	Perfect	Adbert		protein homolog model	resistance-nodulation-cell division (RND) antibiotic efflux pump	aminocoumarin antibiotic	antibiotic efflux	100.0	100.00
	Perfect	mdiB		protein homolog model	resistance-nodulation-cell division (RND) antibiotic efflux pump	aminocoumarin antibiotic	antibiotic efflux	100.0	100.00
	Perfect	mdtC		protein homolog model	resistance-nodulation-cell division (RND) antibiotic efflux pump	aminocoumarin antibiotic	antibiotic efflux	100.0	100.00
	Perfect	beeS		protein homolog model	resistance-nodulation-cell division (RND) antibiotic efflux pump	aminoglycoside antibiotic, aminocoumarin antibiotic	arébictic efflux	100,0	100.00
	Perfect	basR		protein homolog model	resistance-nodulation-cell division (RND) antibiotic efflux pump	aminoglycoside antibiotic, aminocoumarin antibiotic	antibiotic efflux	100,0	100.00
	Perfect	Yoji		protein homolog model	ATP-binding cassette (ABC) antibiotic efflux pump	peptide artibictic	antibiotic efflux	100.0	100.00
	Perfect	PmrF		protein homolog model	pmr phosphoethanolamine transferase	peptide antibiotic	antibiotic target alteration	100.0	100.00
	Perfect	emrY		protein homolog model	major facilitator superfamily (MFS) antibiotic efflux pump	tetracycline antibiotic	artibiotic efflux	100.0	100.00
	Perfect	emrK		protein homolog model	major facilitator superfamily (MFS) antibiotic efflux pump	tetracycline antibiotic	antibiotic efflux	100.0	110.28
	Perfect	Agva		pratein homalag model	major facilitator superfamily (MFS) antibiotic efflux pump, resistance-nodulation-cell division (RND) antibiotic efflux pump	macrolide arribiotic, fluoroquinolone arribiotic, penam, tetracycline artibiotic	-artibiotic efflux	100.0	100.00
	Perfect	evgS		pratein homolog model	major facilitator superfamily (MFS) antitriotic efflux pump, resistance-nodulation-cell division (RND) antibiotic efflux pump	macrolide artibiotic, fluoroquinolone artibiotic, penam, tetracycline artibiotic	arribiotic efflux	100.0	100.00
	Perfect	acrD		protein homolog model	resistance-nodulation-cell division (RND) antibiotic efflux pump	aminoglycoside antibiotic	antibiotic efflux	100.0	100.00
	Perfect	Rmm		protein homolog model	major facilitator superfamily (MFS) antibiotic efflux pump	fluoroquinalane antibiotic	antibiotic efflux	100.0	100.00
	Perfect	emrA		protein homolog model	major facilitator superfamily (MFS) antibiotic efflux pump	fluoroquinolone antibiotic	antibiotic efflux	100.0	100.00
	Perfect	ептВ		protein homolog model	major facilitator superfamily (MFS) antibiotic efflux pump	fluoroquinalane antibiotic	antibiotic efflux	100.0	100.00

The Fleming Fund | SeqAfrica

21

EXAMPLE CARD output:

- EmrY, emrK and emrB
- Perfect hits!
 - Expect for emrK, ID and COV are 100%
- Should we expect resistance to tetracycline and fluoroquinolones in this isolate?

RGI ^ Criteria	♦ ARO Term	\$NP	Detection Criteria	AMR \$
Perfect	emrY		protein homolog model	major facilitator superfamily (MFS) antibiotic efflux pump
Perfect	emrK		protein homolog model	major facilitator superfamily (MFS) antibiotic efflux pump
Perfect	emrB		protein homolog model	major facilitator superfamily (MFS) antibiotic efflux pump

Drug Class	Resistance \$ Mechanism	% Identity of Matching \$ Region	% Length of Reference \$
tetracycline antibiotic	antibiotic efflux	100.0	100.00
tetracycline antibiotic	antibiotic efflux	100.0	110.26
fluoroquinolone antibiotic	antibiotic efflux	100.0	100.00

Lets try a different tool for the strain: ResFinder

No resistance at all?

ResFinder-4.1 Server - Results

Input Files: GCF_000005845.2_ASM584v2_genomic.fna

Warning:

One or more resistance genes does not exist in the phenotype database. The Summary table does not take this into account.

escherichia coli complet	te	
Antimicrobial	Class	WGS-predicted phenotype
amikacin	aminoglycoside	No resistance
tigecycline	tetracycline	No resistance
tobramycin	aminoglycoside	No resistance
cefepime	beta-lactam	No resistance
chloramphenicol	amphenicol	No resistance
piperacillin+tazobactam	beta-lactam	No resistance
cefoxitin	beta-lactam	No resistance
ampicillin	beta-lactam	No resistance
ampicillin+clavulanic acid	beta-lactam	No resistance
cefotaxime	beta-lactam	No resistance
ciprofloxacin	quinolone	No resistance
colistin	polymyxin	No resistance
sulfamethoxazole	folate pathway antagonist	No resistance
imipenem	beta-lactam	No resistance
trimethoprim	folate pathway antagonist	No resistance
nalidixic acid	quinolone	No resistance
ertapenem	beta-lactam	No resistance
tetracycline	tetracycline	No resistance
fosfomycin	fosfomycin	No resistance
ceftazidime	beta-lactam	No resistance
temocillin	beta-lactam	No resistance
gentamicin	aminoglycoside	No resistance
meropenem	beta-lactam	No resistance
azithromycin	macrolide	No resistance

23

Lets try a different tool for the strain: ResFinder

- No resistance at all?
- No resistance to tetracycline or quinolones?

ResFinder-4.1 Server - Results

Input Files: GCF_000005845.2_ASM584v2_genomic.fna

Warning:

One or more resistance genes does not exist in the phenotype database. The Summary table does not take this into account.

escherichia coli comple			
Antimicrobial	Class	WGS-predicted phenotype	Genetic background
ımikacin	aminoglycoside	No resistance	
tigecycline	tetracycline	No resistance	
tobramycin	aminoglycoside	No resistance	
cefepime	beta-lactam	No resistance	
chloramphenicol	amphenicol	No resistance	
piperacillin+tazobactam	beta-lactam	No resistance	
cefoxitin	beta-lactam	No resistance	
ampicillin	beta-lactam	No resistance	
ampicillin+clavulanic acid	beta-lactam	No resistance	
cefotaxime	beta-lactam	No resistance	
ciprofloxacin	quinolone	No resistance	
colistin	polymyxin	No resistance	
sulfamethoxazole	folate pathway antagonist	No resistance	
imipenem	beta-lactam	No resistance	
rimethoprim	folate pathway antagonist	No resistance	
nalidixic acid	quinolone	No resistance	
ertapenem	beta-lactam	No resistance	
tetracycline	tetracycline	No resistance	
fosfomycin	fosfomycin	No resistance	
ceftazidime	beta-lactam	No resistance	
temocillin	beta-lactam	No resistance	
gentamicin	aminoglycoside	No resistance	
meropenem	beta-lactam	No resistance	
azithromycin	macrolide	No resistance	

The Fleming Fund | SeqAinca

Lets try a different tool for the strain: ResFinder

- No resistance at all?
- No resistance to tetracycline or quinolones?
- One tool gives 44 hits, another gives 0 what is the truth?

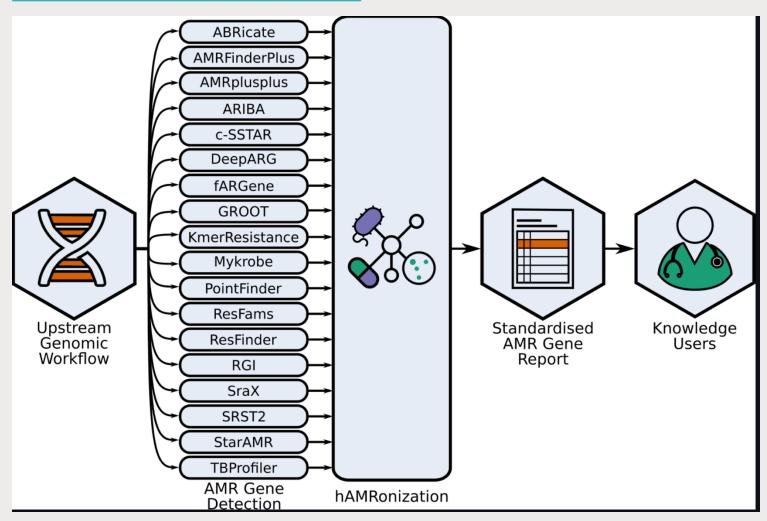
ResFinder-4.1 Server - Results

Input Files: GCF_000005845.2_ASM584v2_genomic.fna

Warning:

One or more resistance genes does not exist in the phenotype database. The Summary table does not take this into account.

escherichia coli complet	te	
Antimicrobial	Class	WGS-predicted phenotype
amikacin	aminoglycoside	No resistance
tigecycline	tetracycline	No resistance
tobramycin	aminoglycoside	No resistance
cefepime	beta-lactam	No resistance
chloramphenicol	amphenicol	No resistance
piperacillin+tazobactam	beta-lactam	No resistance
cefoxitin	beta-lactam	No resistance
ampicillin	beta-lactam	No resistance
ampicillin+clavulanic acid	beta-lactam	No resistance
cefotaxime	beta-lactam	No resistance
ciprofloxacin	quinolone	No resistance
colistin	polymyxin	No resistance
sulfamethoxazole	folate pathway antagonist	No resistance
imipenem	beta-lactam	No resistance
trimethoprim	folate pathway antagonist	No resistance
nalidixic acid	quinolone	No resistance
ertapenem	beta-lactam	No resistance
tetracycline	tetracycline	No resistance
fosfomycin	fosfomycin	No resistance
ceftazidime	beta-lactam	No resistance
temocillin	beta-lactam	No resistance
gentamicin	aminoglycoside	No resistance
meropenem	beta-lactam	No resistance
azithromycin	macrolide	No resistance

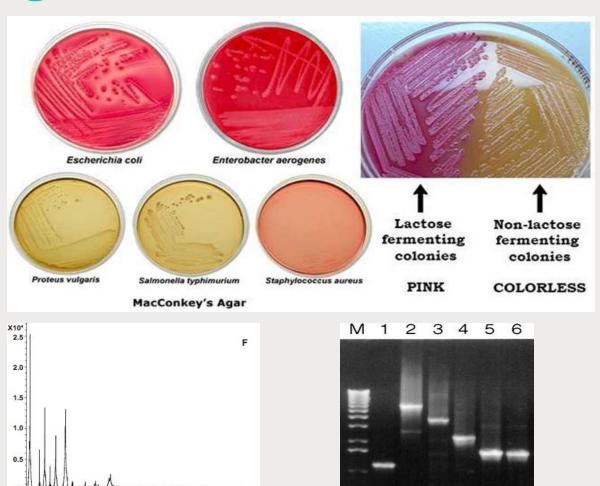


Differences in output example

- The strain run in this example is a standard laboratory strain E. coli K-12 substrain MG1655
- It is not expected to have any phenotypic resistance to tetracycline (Zhang et al., 2022)
 - Not actually expected to have any particular phenotypic resistance different from wild-type
 - e. coli
- If run on AMRfinderplus, no resistance genes are found either.
- Approach databases with care and select based on your scope
 - How does results translate to the laboratory, genotypic =/= phenotypic
 - How much expertise is demanded to utilize findings
 - What is the aim of your analysis

hAMRonization

Let's take a break ©



Typing methods

Introduction to typing methods

- Phenotypic identification
 - Biochemical/metabolic analysis
 - Chromogenic media
 - AST
 - CIM test
- Molecular identification
 - PCR (genus/species/AST)
 - MALDI-TOF MS
 - Microarray (AMR)
 - MLST (PCR/Sequencing)

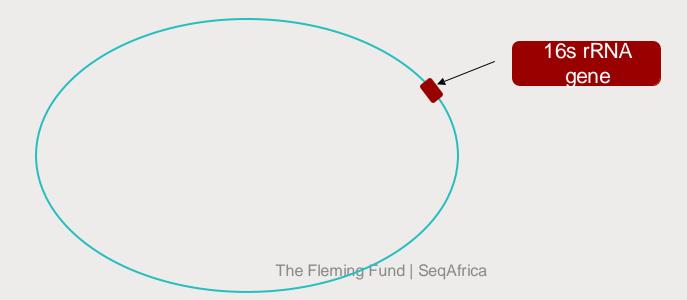
The Fleming Fund | SegAfrica

Working with typing and outbreak detection

Purpose of subtyping?

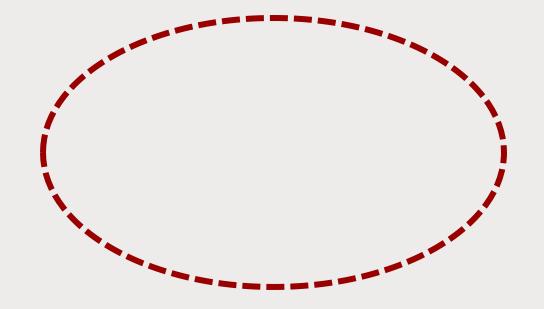
- Genus/Species determination
- Serotyping and MLST
 - Characterization and grouping of isolates
- cgMLST and SNP analysis
 - Comparison
- Resistance patterns
 - pMLST plasmids
 - Specific genes or combinations

power discriminatory Higher resolution /


Typing tools on CGE server

- Species
 - KmerFinder (full genome) and/or SpeciesFinder (16s rRNA)
- Sub-typing
 - Serotyping (E. coli, P. aeruginosa, Salmonella)
- Typing
 - MLST
 - cgMLSTFinder
 - Campylobacter, Clostridum, E. coli, Listeria, Salmonella, Yersinia
 - -pMLST
 - Plasmidfinder
 - VirueIncefinder
 - -MGE
- Cluster analysis
 - CSIPhylogeny & MinTyper

Genotypic species verification

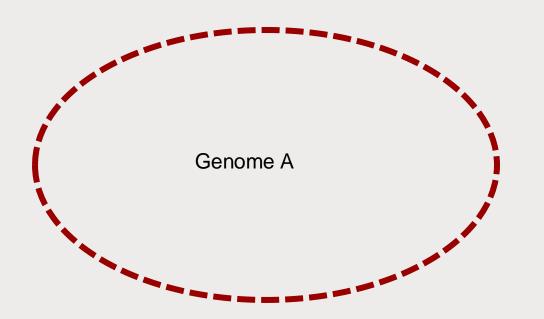

- 16s rRNA gene formed the basis as the first method for sequenced based taxonomy
- Other approaches:
 - gyrB gene, rMLST, species-specific functional domain profiles
 - Only represents a small fraction of the entire genome
 - WGS data can provide higher discriminatory power e.g. between Shigella and Escherichia spp.

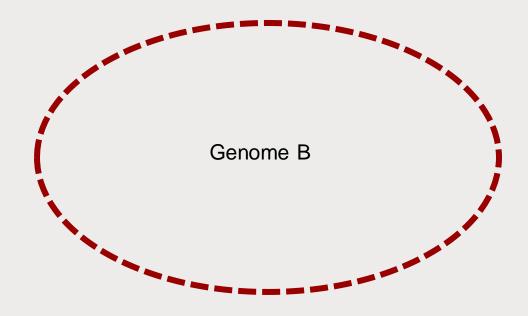
Prediction of species - Kmerfinder

- With WGS we can use all the genetic information to predict the species
- Kmerfinder works by breaking a genome into little pieces (k-mers) and identifying the species from these pieces (k-mers)

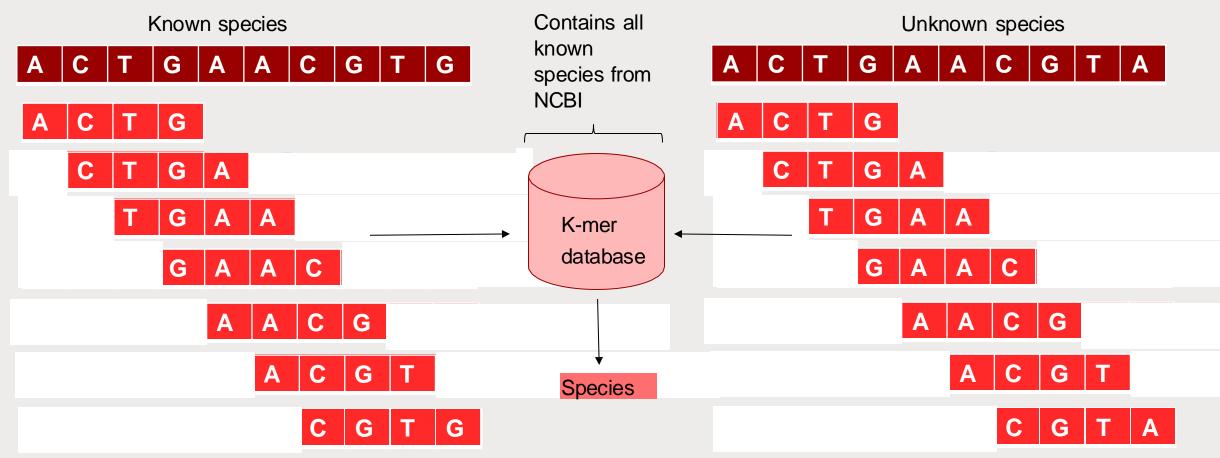
Reminder: k-mers

- A k-mer is a continuous sequence of k bases
 - e.g a certain length of DNA, RNA or protein
- There are 4^k combinations of a k-mer
- Using long k-mers provides a highly unique sequence
- Sequences with high similarity must share k-mers

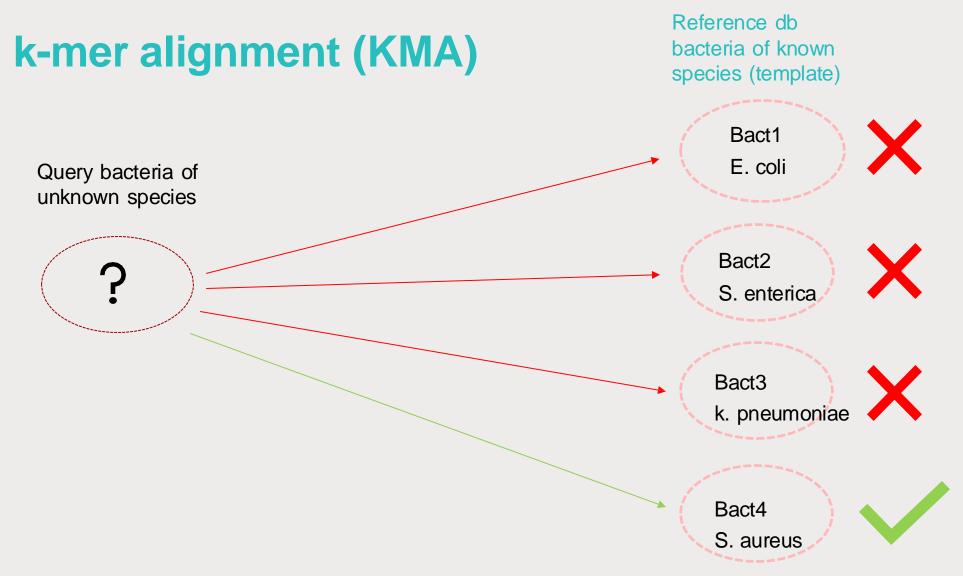



• We can extract all the 4-mers (substrings of length 4) in this DNA sequence

Species prediction with k-mers

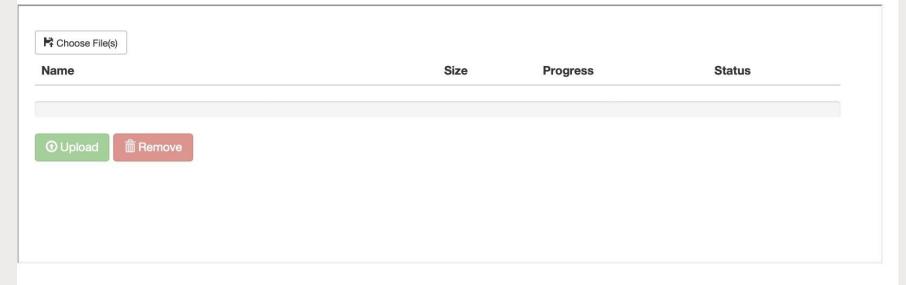

- Sequences with high similarity must share k-mers
- We can break genomes up into k-mers and compare them

Species prediction with KmerFinder



Species prediction with KmerFinder

- Genomes are spilt into 16-mers
 - 4.3 billion combinations
 - ~10.000 recognized spp.
 - ~600.000 bacterial operation taxonomic units.
- Only 16-mers with specific prefixes are kept e.g ATGAG
 - Reducing k-mers reduces size of database.
 - Speed-up computing time.
 - Reduces redundancy.
- But how does the tool the compare k-mers?

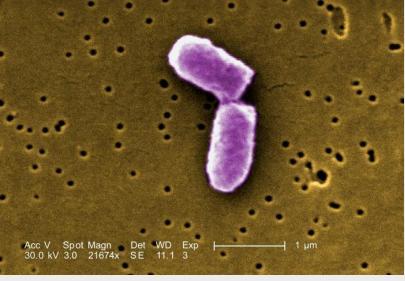

KmerFinder webtool

Select database Bacteria organisms

Upload file(s)

To input the sequences, upload a single FASTA file, or one/two FASTQ file(s), or one interleaved FASTQ file on your local disk by using the applet below. Both assembled genome (in FASTA format) and raw reads single end or paired end (in FASTQ format) are supported. Gzipped FASTA/FASTQ files are also supported.

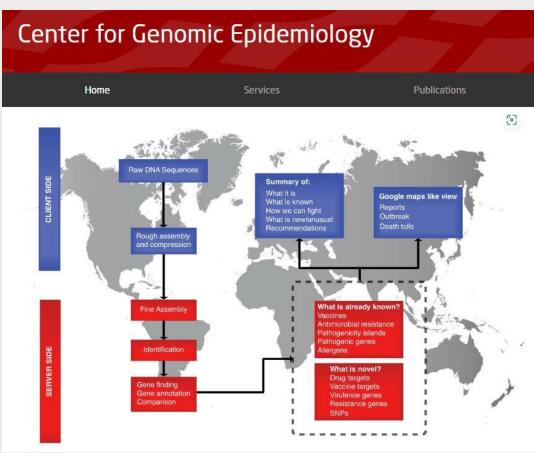
If you get an "Access forbidden. Error 403": Make sure the start of the web adress is https and not just http. Fix it by clicking here.



Subtyping of bacteria

- Information of bacteria below species level
 - Outbreak detection, clusters, common contamination source, transmission routes...
 - E. coli/Salmonella traditional subtyping:
 - serotyping using antisera against the ca. 186 O-antigens and 53 H-flagellar antigens for *E. coli* or 46 O-antigens and 114 H-antigens for *Salmonella* (ca 2600 serovars).
 - Requires anti-sera and trained personnel.
 - Time consuming and not always accurate or inconclusive.
 - Phagetyping:
 - Golden standard method for surveillance of Salmonella Typhimurium and S.
 - Enteritidis also used for *E. coli* and other bacteria.
 - Requires a comprehensive panel of different phages, considerable technical expertise.

 The Fleming Fund | SeqAfrica



E. coli in scanning electron microscopic image, CDC/ Evangeline Sowers, Janice Haney Carr, 2005, Public domain image, https://phil.cdc.gov/Details.aspx?pid=10042

Genotypic determination of classical methods

- E. coli serotyping:
- DTU developed tool:
- https://cge.food.dtu.dk/services/SerotypeFinder/
- Salmonella subtyping:
- DTU hosted tool:
- https://cge.food.dtu.dk/services/SeqSero/

SerotypeFinder 2.0

SerotypeFinder identifies the serotype in total or partial sequenced isolates of E. coli. Fasta file with test sequence: Test_sequence

The database is curated by: Flemming Scheutz, SSI (click to contact)

Software version: 2.0.1 (2020-07-27) Database version: 1.0.0 (2022-05-16)

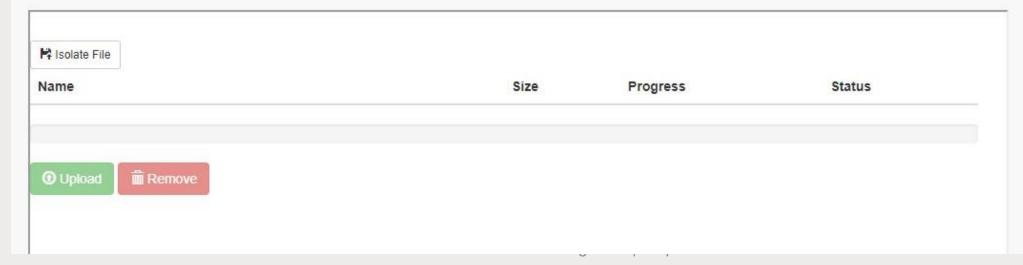
Select organism

Select multiple items, with Ctrl-Click (or Cmd-Click on Mac)

Select threshold for %ID

85 %

Select minimum length

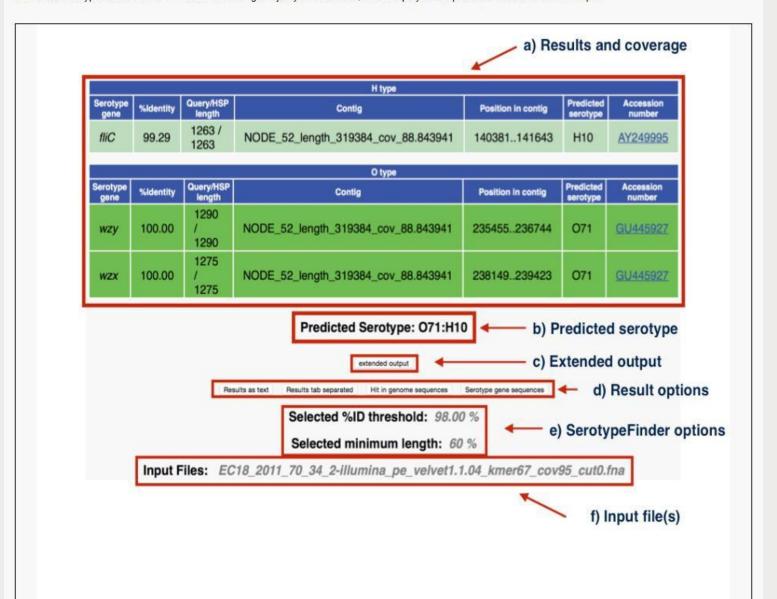

The minimum length is the number of nucleotides a sequence must overlap a serotype gene to count as a hit for that gene. Here represented as a percentage of the total serotype gene length.

60 %

Select type of your reads

Only data from one single isolate should be uploaded. If raw sequencing reads are uploaded KMA will be used for mapping. KMA supports the following sequencing platforms: Illumina, Ion Torrent, Roche 454, SOLiD, Oxford Nanopore, and PacBio.

Assembled or Draft Genome/Contigs* (fasta)

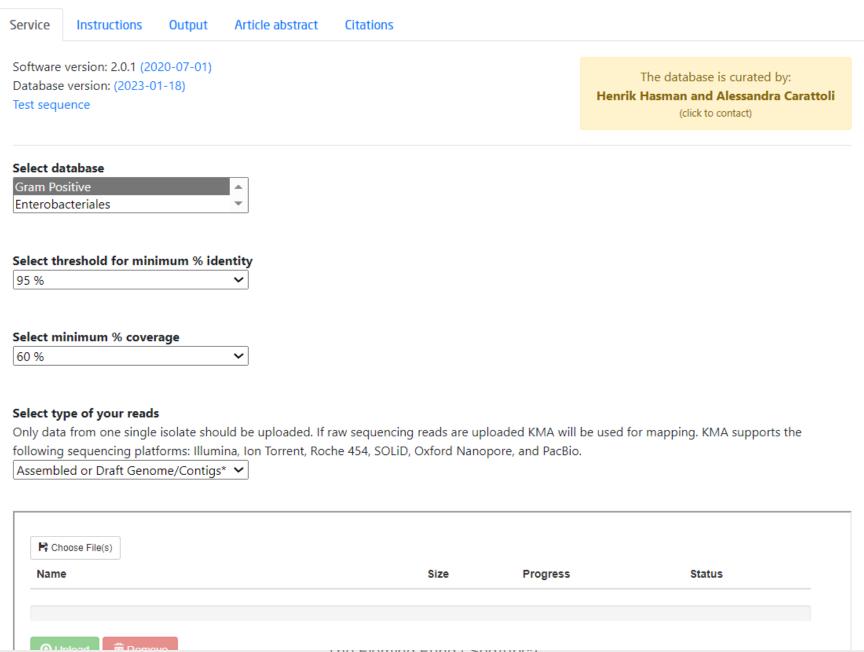


The Fleming

SerotypeFinder 2.0 Output Guide

Graphical output example and explanation

Once the SerotypeFinder server has finished running the job you submitted, it will display an output similar to the below example:



Analysis of mobile genetic elements

- PlasmidFinder.
 - Tool for identification of replicons
 - Plasmid replicons are divieded into incompability groups.
 - Plasmids which share the same replication mechanisms cannot be maintained in the same cell
 - Use fasta files as input to gain insight into linkage to AMR genes
- MGE (Mobile Genetic Element Finder)
 - Identifies MGEs in the genome
 - Provides information on virulence and AMR genes contained in identified MGEs
 - Takes fasta files as input

PlasmidFinder 2.1

PlasmidFinder-2.0 Server - Results

Organism(s): Enterobacteriaceae

If the replicon is found on the same contig as a AMR gene, it indicates the gene is on a plasmid

Enterobacteriaceae, Acenitobacter baumannii										
Plasmid	Identity	Query / Template length	Contig	Position in contig	Note	Accession number				
IncFIB(AP001918)	96.84	538 / 682	NODE_151_length_1547_cov_574.472534	1538		AP001918				
IncFII(pRSB107)	97.7	261 / 261	NODE_103_length_1790_cov_579.962585	539799		AJ851089				
Incl1-I(Gamma)	97.89	142 / 142	NODE_266_length_500_cov_522.737976	61202		AP005147				

extended output

Input Files: restindertest.fa

Results as text Results tsv Hits in genome seqs Plasmid sequences

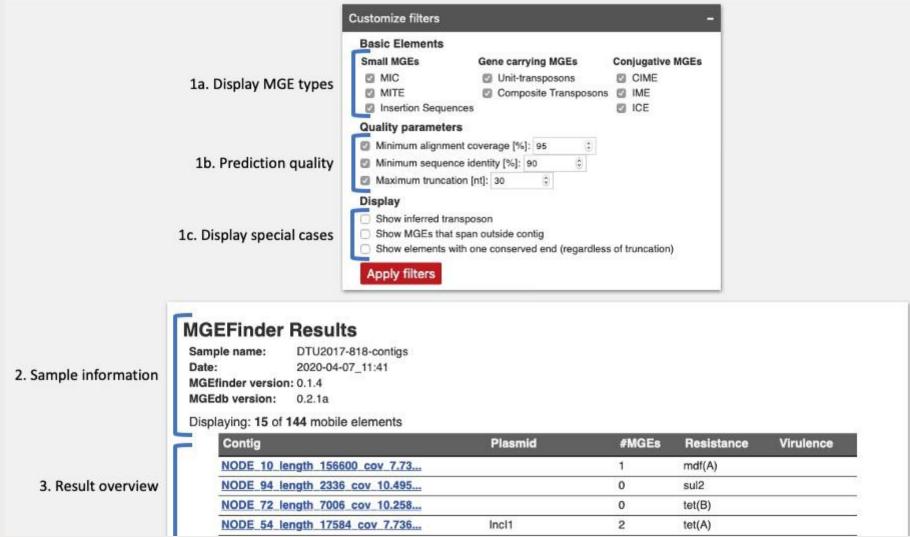
The database is curated by:
Markus Johansson
(click to contact)

Software version: v1.0.3 (2020-10-09) Database version: v1.0.2 (2020-06-09)

MobileElementFinder identifies mobile genetic elements and their relation to antimicrobial resistance genes and virulence factors.

Example sequence

Annotate accessory genes (Optional)
If you want to use databases currently not supported by MobileElementFinder, please download the mobile element sequences and upload them to the service of choice.


Acquired Antimicrobial Resistance genes (ResFinder)

Virulence genes (VirulenceFinder)

Remove

Size Progress Status

Contig result view

1. Genes on contig

2. MGEs on contig

2a. MGE information

2b. Prediction metrics

Contig: NODE_54_length_17584_cov_7.73695_ID_6293

Plasmid name Database Accession Position in contig Coverage Identity Incl1 Enterobacteriaceae AP005147 7055-7196 100% 99.3% Resistance results Gene name Phenotype Accession Position in contig Coverage Identity Tetracycline resistance AJ517790 12904-14103 100% 100% tet(A)

IS26
Synonyms IS6,IS26L,IS26R,IS46,IS140,IS160

Family

Type Insertion sequence

 Reference db
 isfinder

 Accession
 X00011

 Position in contig
 15498-16317

 Strand
 forward

 Read depth
 7.74

Alignment coverage 100%; 820 / 820

Sequence identity 100% Num Substitutions 0 E-value 0

Show MGE alignment

ISSbo1

Plasmid results

Family IS91

Type Insertion sequence Reference db isfinder

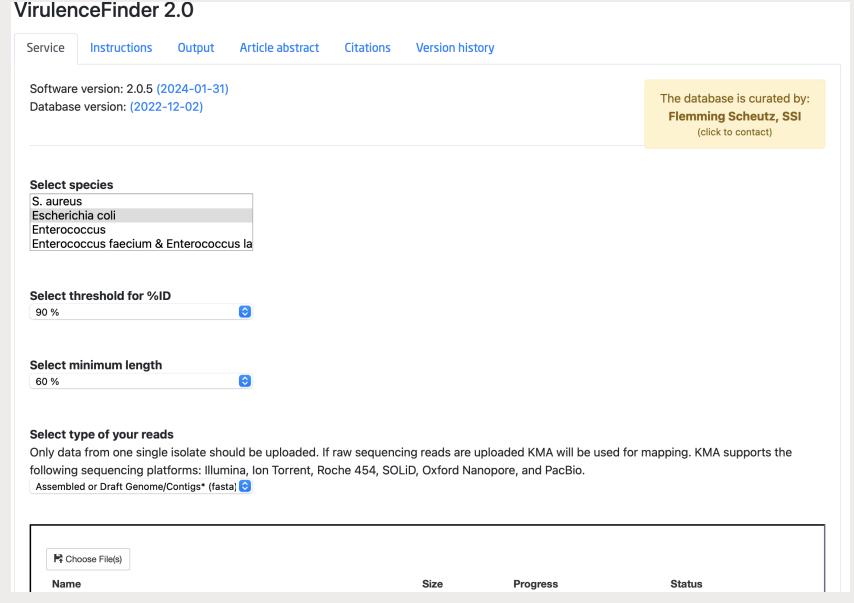
 Accession
 CP001062

 Position in contig
 9195-10903

 Strand
 forward

 Read depth
 7.74

Alignment coverage 100%; 1709 / 1709


Sequence identity 96.02% Num Substitutions 68 E-value 0

Show MGE alignment

Virulence Finder

- Detects virulence genes
- Virulence genes are genes that help bacteria establish infections in their hosts.
- These genes encode proteins that help bacteria colonize and survive in the host or damage the host.

VirulenceFinder-1.2 Server - Results

SETTINGS:

Selected %ID threshold: 98.00

Virulence - E. coli									
Virulence factor	%Identity	Query/HSP length	Contig	Position in contig	Protein function	Accession number			
mcmA	99.64	279 / 279	NODE_17_length_48340_cov_62.616714	4090941187	Microcin M part of colicin H	<u>AJ515251</u>			
lpfA	100.00	573 / 573	NODE_4_length_115337_cov_62.053581	8485785429	Long polar fimbriae	KC207123			
iss	99.71	342 / 342	NODE_195_length_89121_cov_54.610832	8770188042	Increased serum survival	CU928160			
prfB	100.00	882 / 882	NODE_75_length_157387_cov_57.585850	9432495205	P-related fimbriae regulatory gene	CP002970			

extended output

Results as text

Results tab separated

Hit in genome sequences

Virulence gene sequences

Input Files: EC19_2011_70_34_3-illumina_pe_velvet1.1.04_kmer63_cov57_cut0.fna

Sequence identity

- A term we encounter in the cge tools is % identity (ID)
- The identity describes how many bases of the aligned sequences are identical
- Given the alignment:

Sequence identity

- A term we encounter in the cge tools is % identity (ID)
- The identity describes how many bases of the aligned sequences are identical
- Given the alignment:
- Sequence length 60
- Matches 59

• %ID = 59/60*100% = 98.3%

Sequence coverage

 The term sequence % coverage (COV) refers to the proportion of covered gene

- Given the alignment:
- Sequence length 60
- Covered positions are 27
- %COV = 27/60*100% = 45.0%

```
GGGGATCGTTTACGTCGTCTGACCGCCGGTATTTGCCTGATAACACAAACTATTTTCCCT
```


Let's take a break ©

Thank you

This programme is being funded by the UK Department of Health and Social Care. The views expressed do not necessarily reflect the UK Government's official policies.

