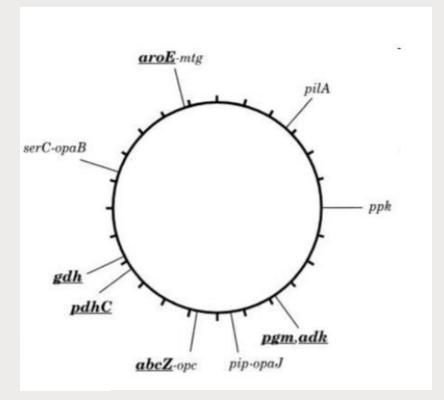
Whole Genome Sequencing and Bioinformatics SeqAfrica Training

4-7th March 2025 CHSU, Lilongwe

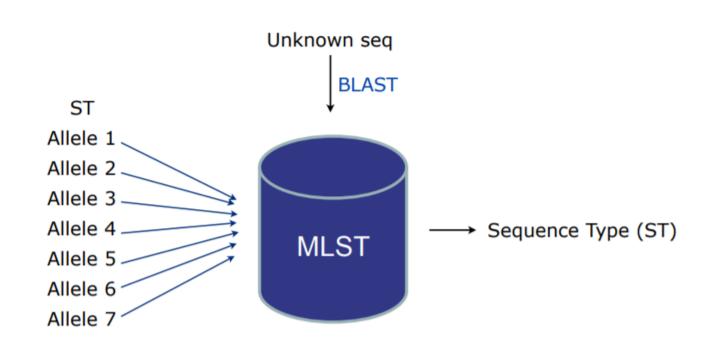
Marco van Zwetselaar Niamh Lacy-Roberts Day 4


Typing and Phylogenetic Analysis

Multi-Locus Sequence Typing (MLST)

Classical MLST:

- The (old) gold standard for typing
- First developed in 1998 for *Neisseria meningitis* (Maiden et al. PNAS 1998. 95:3140-3145)
- The nucleotide sequence of internal regions of app. 7 housekeeping genes are determined by PCR followed by Sanger sequencing
- Different alleles are each assigned a random number.
- The unique combination of alleles is the sequence type (ST).


MLST now

- For many bacterial species, MLST is considered the gold standard of typing.
 - It is traditionally performed in an expensive and time-consuming way.
- As the cost of WGS continues to decline, it becomes increasingly available to scientists and routine diagnostics laboratories.
 - Currently, the WGS cost is typically below that of traditional MLST.

7 x PCR and sequencing vs. 1 x WGS

MLST Typing by WGS

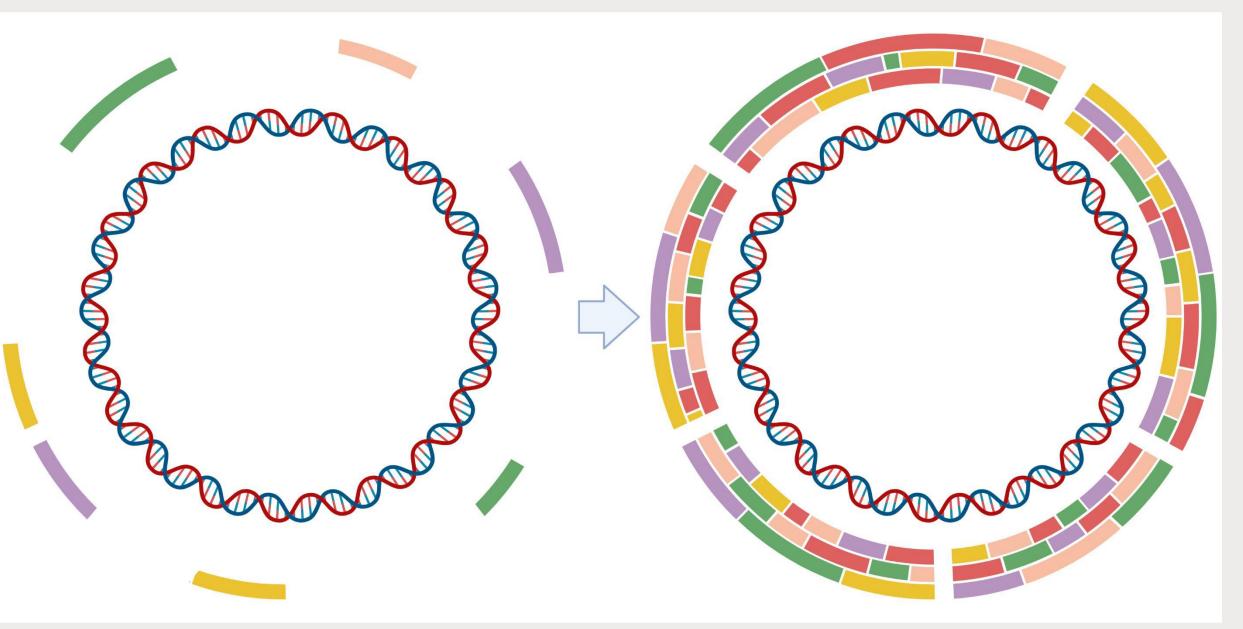
MLST result output

MLST-2.0 Server - Results

mlst Profile: Imonocytogenes

Organism: Listeria monocytogenes

Sequence Type: 6


One limitation: ONE variation in bases of one of the seven genes: new allele number = different ST

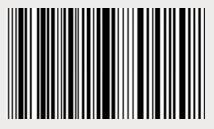
Locus	Identity	Coverage	Alignment Length	Allele Length	Gaps	Allele
abcZ	100	100	537	537	0	abcZ_3
bglA	100	100	399	399	0	bgIA_9
cat	100	100	486	486	0	cat_9
dapE	100	100	462	462	0	dapE_3
dat	100	100	471	471	0	dat_3
ldh	100	100	453	453	0	ldh_1
lhkA	100	100	480	480	0	lhkA_5

extended output

Input Files: Lm02.fa

Why limit to SEVEN genes when we sequence the whole genome? -> core genome MLST

Created in BioRender.com


cgMLST – core genome

- Core genome = genes common for (almost) all within the species
 - E. coli has approx. 5000-5500 genes, hereof 2300 are selected for the cgMLST scheme

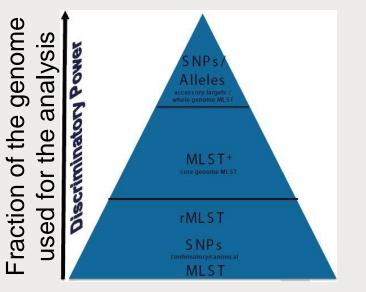
Locus	Identity	Coverage	Alignment Length	Allele Length	Gaps	Allele
abcZ	100	100	537	537	0	abcZ_3
bglA	100	100	399	399	0	bgIA_9
cat	100	100	486	486	0	cat_9
dapE	100	100	462	462	0	dapE_3
dat	100	100	471	471	0	dat_3
ldh	100	100	453	453	0	ldh_1
lhkA	100	100	480	480	0	lhkA_5
Gene08						
Gene09						
Gene10						
Gene11						
Gene12						
Gene13						
Gene14						
Gene15						
Gene16						
Gene17						
Gene18						
Gene19						

Each gene variant has an allele number

Each allele combination has a cg ST assigned based on the cgMLST scheme

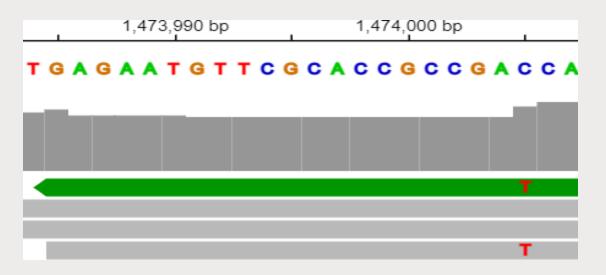
By cgMLST very closely related genomes are 'lumped' together in a Complex Type (CT)

Can also be used to interpret clusters


Whole genome based phylogeny

- Single Nucleotide Polymorphism (SNP)
 - Require reference genome
- Gene-by-gene approach
 - cgMLST core genome MLST/wgMLST whole genome MLST
 - No reference genome required
 - Require species specific cgMLST scheme
- What is phylogeny used for?
 - Classify taxonomy the classic use
 - Outbreak detection detection of clones increasing with WGS data

Sequence-based typing


- MLST
- cgMLST / SNP (Core/Whole Genome Comparison)
- Presence/absence of genes and mobile elements
 -often a combination of the above is used to study outbreaks.

Single nucleotide polymorphism (SNP)

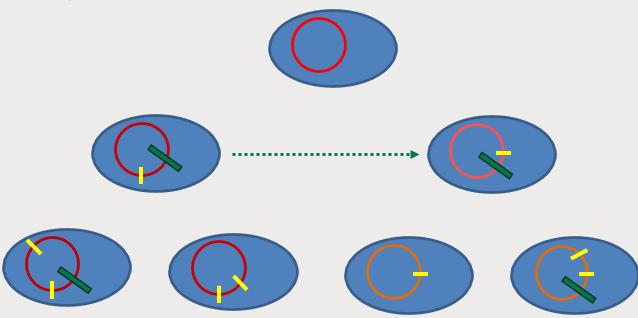
- A SNP is a mutation within a subpopulations of individuals, essentially it is a point mutation which distinguishes two "closely" related strains of the same species
- To separate sequencing error from true SNPs, we need to have:
 - Proper sequencing depth at the position
 - High Q-score
- When we know the amounts of SNP differences we can infer the phylogenic relationship between strains

Section of reads mapped to reference, visualized using integrative genomics viewer, <u>IGV: Integrative</u> <u>Genomics Viewer</u>

• High resolution

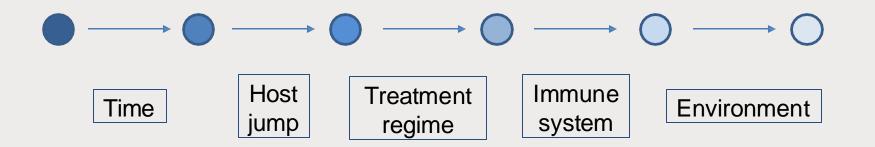
Clone theory 101

- Textbook A clone is:
 - "a group of genotypic identical isolates descending from a common ancestor as part of a direct chain of replication"
- A more realistic definition:
 - "the word clone will be used to denote bacterial cultures isolated independently from different sources, in different locations, and perhaps at different times, but showing so many identical phenotypic and genotypic traits that the most likely explanation for this identity is a common origin"
- (Ørskov & Ørskov, 1983)


The Chromosomograph ...an evolutionary clock! Diversity

- Randomly generated across the chromosome over time ("The mutation rate")
- ...but influenced by external factors...

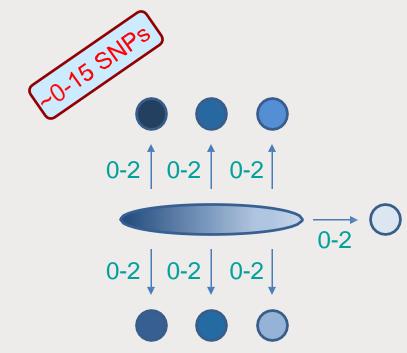
Horizontal gene transfer


The Chromosomograph's evil nemesis

- Horizontal gene transfer circumvents the linearity of the evolutionary clock
- ...and needs to be addressed in any whole genome analysis such as SNPs...

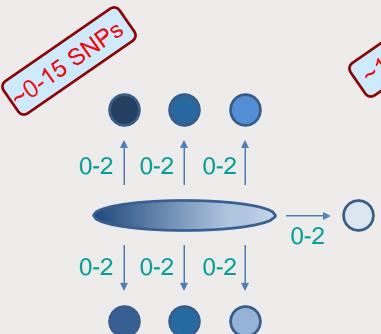
Advanced clone theory Clonal drift

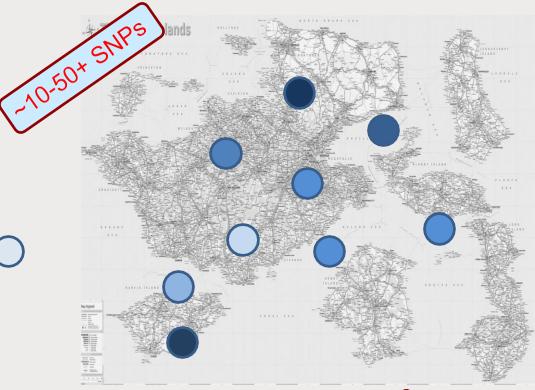
- The more discriminatory a typing method is, the more difficult it will be for it to accommodate *biological variation* caused by clonal drift over time (stability issues).
- On top of this, all typing methods will add *methodological variation* (repeatability and reproducibility issues) thus blurring the picture even more.



Single source outbreaks

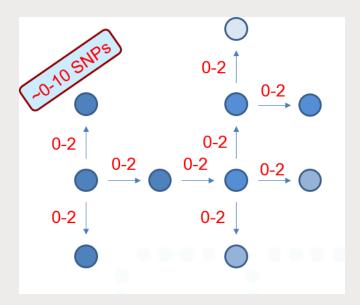
-0-5 SNP -0-10 SN 0-2 0-2 0-2 0-2 0-2 0-2 0-2 0-2 0-2 Single source – local spread **Single source Short** Long time span time span "Hospital or regional outbreak" "Contaminated dish" "Single infected patient"

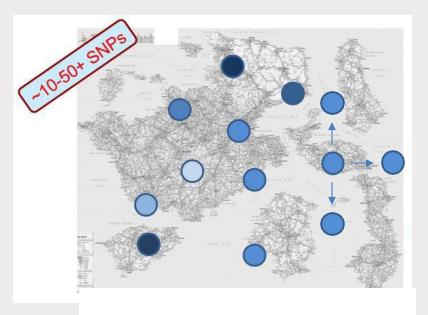

Complicated outbreaks



Single source Long time span "Contaminated processing plant / industry" "Long-term colonized patient / healthcare worker"

Complicated outbreaks




Single source Long time span "Contaminated processing plant / industry" "Long-term colonized patient / healthcare worker"

International s Long time clones "Importer aional source" "Tray memated outbreak"

PO = Possible outbreaks(E. COLI)

Tentative definition of possible outbreak (PO)

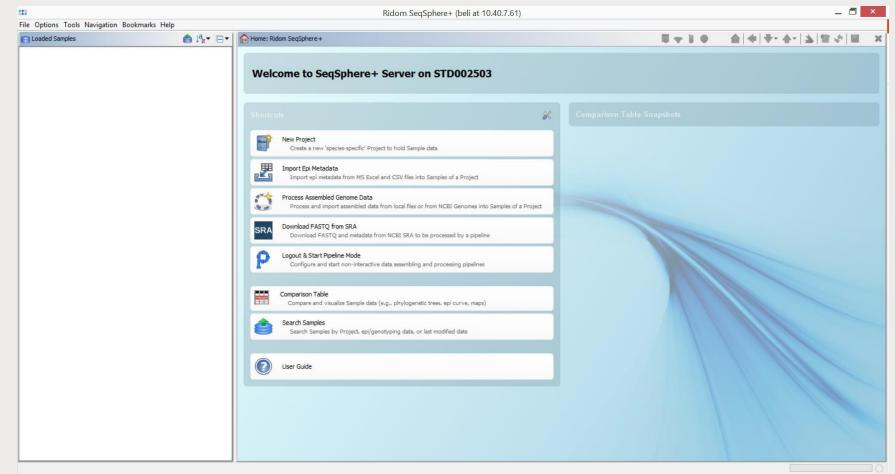
If two isolates have a SNP distance ≤ 10 (termed PO₁₀), they are considered to be so genetically related that they may be part of the same outbreak.

Phylogenetic analysis

Core genome MLST (cgMLST)

- Reference based gene-by-gene comparison
- Super MLST"
- Increased number of genes → Increased discriminatory power requires curated and validated schemes
- Requires software to remove gene homologues if you want to build your own scheme.

cgMLST.org Nomenclature Server

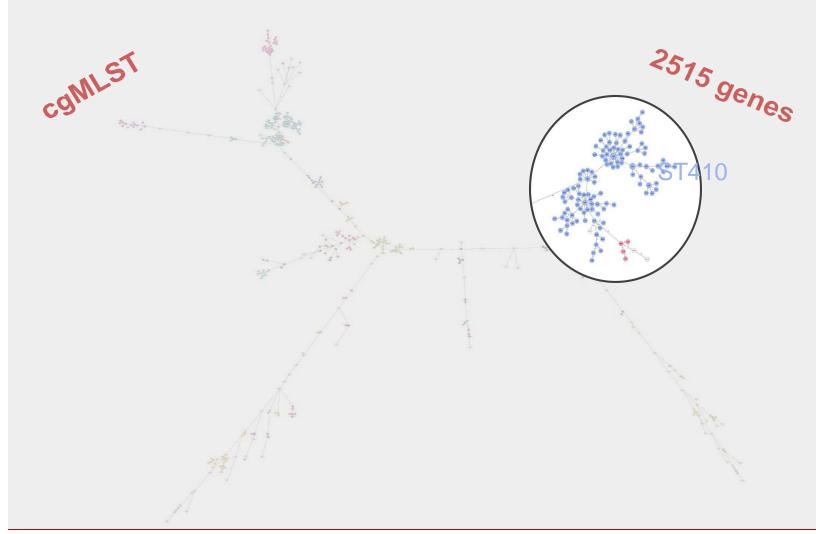

This server controls the allelic nomenclature of core genome MLST (cgMLST) bacterial gene schemes. Currently submission of new alleles and optional metadata is only possible by use of the SeqSphere+ software. A cgMLST scheme is a fixed and agreed upon number of genes for each species or group of closely related species that is ideally suited to standardize whole genome sequencing (WGS) based bacterial genotyping. By cgMLST very closely related genomes are 'lumped' together in a **Complex Type** (CT). In addition, this server controls the allelic nomenclature of the **accessory genes** of the species seed genomes.

We care about your privacy. Read our privacy policy.

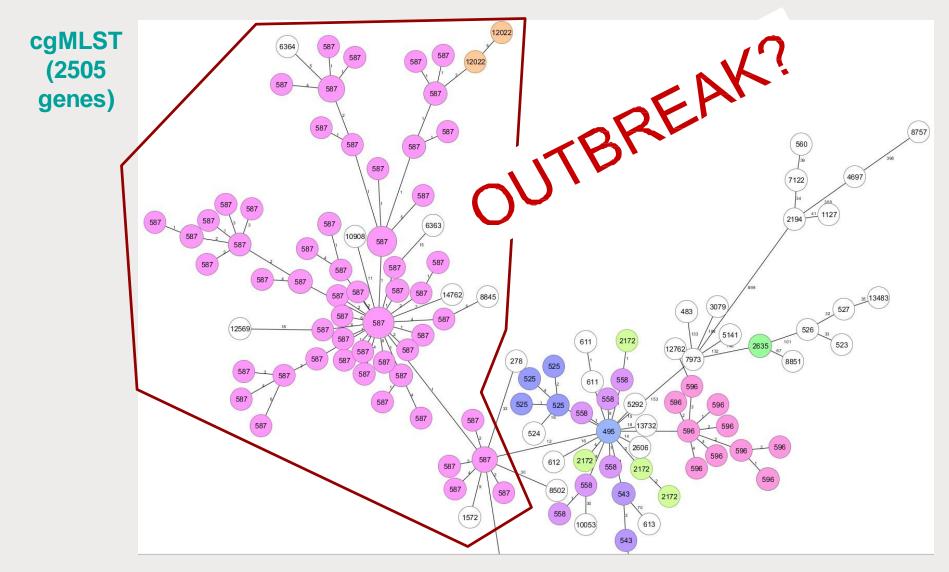
Scheme	Target Count	Strain Count
Acinetobacter baumannii cgMLST	2,390	8,258
Bacillus anthracis cgMLST	3,803	209
Brucella melitensis cgMLST	2,704	89
Brucella spp. cgMLST	1,764	1
Burkholderia mallei (FLI) cgMLST	2,838	1
Burkholderia mallei (RKI) cgMLST	3,328	13
Burkholderia pseudomallei cgMLST	4,221	21
Campylobacter jejuni/coli cgMLST	637	4,643
Clostridioides difficile cgMLST	2,147	1,621
Clostridium perfringens cgMLST	1,431	99
Enterococcus faecalis cgMLST	1,972	3,743
Enterococcus faecium cgMLST	1,423	17,491
Escherichia coli cgMLST	2,513	13,983

SeqSphere+ Software

Available schemes: S. aureus – E. coli – E. faecium – A. baumannii – K. pneumoniae ... and more

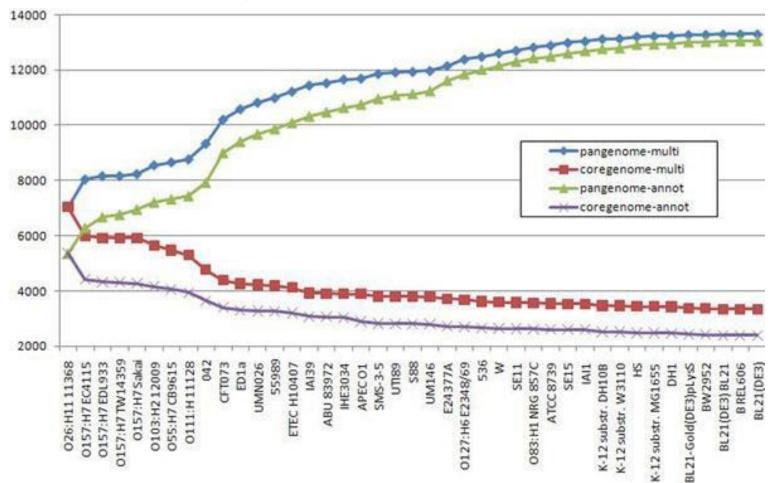


Core genome MLST (cgMLST)


																		C	Con	npa	ris	on	Tal	ble	e: C	fr	eur	nd	ii_S	T1	8 [1	Ins	tor	ed]																										_ 0	×
File Edit	Data (Colu	umns Analysis Tools																																																										
8	44	▶ :	× = ∓ 9 8 ⊜ 🗗 🛠	- 6	9	• i				"	14	40		T G G G	T C																																														
#Missing v	Perc C		Sample ID Sample	ST c.		Clu So				2.2			Profi		MLS	r			asp c.t							lysf c.t	A c	AF c.	AF C	A A	A A	AF c.	AF c.	AF c.	AF c.	AF c.	AF C.	AF /	4F A	F A	AF	AF c.	AF c.	AF c.	AF	AF /	AF A	FA	AF	AF c.	AF c.	AF c.	AF C.	AF .						AR322_RS C. freundii A	
34	100.0	?	AMA332	18	?	? ?	?	?	?	?	?	2	10, 1	4, 1	7, 12	, 5, 1	5, 14	4 1	10	14	17	12	2 5	5	5 1	14	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1 1	. 1	1			1	? (not found	d) 1
75	100.0	?	CPO20160068_CLCc	18	?	? ?	?	?	?	?	?	?	10, 1	4, 1	7, 12	, 5, 1	5, 14	4 1	10	14	17	12	2 5	5	5	14	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1 1	. 1	1			1	1	1
136	98.2	?	GCF_001880795_1_ASM188079v1_g	18	?	? ?	?	?	?	?	?	?	10, 1	4, 1	7, 12	, 5, 1	5, 14	4 1	10	14	17	12	2 5	5	5 1	14	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1 1	. 1	1			1		1
135	98.2	?	GCF_001880955_1_ASM188095v1_g	18	?	? ?	?	?	?	?	?	?	10, 1	4, 1	7, 12	, 5, 1	5, 14	4 1	10	14	17	12	2 5	5	5	14	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1 1	. 1	1			1		1
126	98.4	?	CPO20170015_contigs	18	?	? ?	?	?	?	?	?	2	10, 1	4, 1	7, 12	, 5, 1	5, 1	4 1	10	14	17	12	2 5	5	5	14	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1 1	. 1	1			1		1
119	99.0	?	CPO20150022	18	?	???	?	?	?	?	?	2	10, 1	4, 1	7, 12	, 5, 1	5, 14	4 1	10	14	17	12	2 5	5	5 1	14	1	1	1	1	1	1	1	1	1	1	1 1	. 1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1 1	. 1	. 1			1	1	1
105	99.2	?	AMA393	18	?	? ?	?	?	?	?	?	?	10, 1	4, 1	7, 12	, 5, 1	5, 1	4 1	10	14	17	12	2 5	5	5 1	14	1	1	1	1	1	1	1	1	1	1	1 1	. 1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1 1	. 1	. 1			1	1	1
98	99.3	?	AMA653	18	?	???	?	?	?	?	?	?	10, 1	4, 1	7, 12	, 5, 1	5, 1	4 1	10	14	17	12	2 5	5	5	14	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	L 1	1	1	1	1	1	1	1	1 1	. 1	1			1	1	1
96	99.5	?	AMA528	18	?	? ?	?	?	?	?	?	?	10, 1	4, 1	7, 12	, 5, 1	5, 14	4 1	10	14	17	12	2 5	5	5	14	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1 1	1	1			1	? (not found	d) 1
91	99.5	?	AMA533	18	?	? ?	?	?	?	?	?	?	10, 1	4, 1	7, 12	, 5, 1	5, 1	4 1	10	14	17	12	2 5	5	5	14	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1 1	. 1	1			1	1	1
93	99.5	?	AMA535	18	?	? ?	?	?	?	?	?	?	10, 1	4, 1	7, 12	, 5, 1	5, 14	4 1	10	14	17	12	2 5	5	5 1	14	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1 1	. 1	1			1	? (not found	d) 1
91	99.6	?	AMA426	18	?	? ?	?	?	?	?	?	?	10, 1	4, 1	7, 12	, 5, 1	5, 14	4 1	10	14	17	12	2 5	5	5	14	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1 1	. 1	21	not fo	und)	1	1	1
88	99.7	?	AMA463	18	?	? ?	?	?	?	?	?	?	10, 1	4, 1	7, 12	, 5, 1	5, 1	4 1	10	14	17	12	2 5	5	5	14	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1 1	. 1	1			1	1	1
82	99.7	?	AMA570	18	?	???	?	?	?	?	?	?	10, 1	4, 1	7, 12	, 5, 1	5, 1	4 1	10	14	17	12	2 5	5	5 1	14	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	L 1	1	1	1	1	1	1	1	1 1	. 1	1			1	1	1
85	99.7	?	CPO20150067_CLC	18	?	? ?	?	?	?	?	?	2	10, 1	4, 1	7, 12	, 5, 1	5, 1	4 1	10	14	17	12	2 5	5	5 1	14	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1 1	. 1	1			1	1	1
	99.8		CPO20150038	18	?	???	?	?	?	?	?	?	10, 1	4, 1	7, 12	, 5, 1	5, 1	4 1	10	14	17	12	2 5	5	5	14	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1	1	1	1	2	1	1	1 1	1 1	. 1	1			1		1
B1	99.8	?	CPO20160021	18	?	? ?	?	?	?	2	?	?	10, 1	4, 1	7, 12	, 5, 1	5, 14	4 1	10	14	17	12	2 5	5	5 1	14	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1 1	. 1	1			1		1
79	99.9	?	AMA1576_CLCc	18	?	? ?	?	?	?	?	?	?	10, 1	4, 1	7, 12	, 5, 1	5, 14	4 1	10	14	17	12	2 5	5	5	14	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1 1	. 1	1			1		1
78	99.9	?	CPO20150079_CLC	18	?	? ?	?	?	?	?	?	?	10, 1	4, 1	7, 12	, 5, 1	5, 14	4 1	10	14	17	12	2 5	5	5	14	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1 1	. 1	1			1		1
75	99.9	?	CPO20160010	18	?	???	?	?	?	?	?	?	10, 1	4, 1	7, 12	, 5, 1	5, 14	4 1	10	14	17	12	2 5	5	5	14	1	1	1	1	1	1	1	1	1	1	1 1	. 1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1 1	. 1	1			1	1	1
75	99.9	?	CPO20160011	18	?	? ?	?	?	?	?	?	2	10, 1	4, 1	7, 12	, 5, 1	5, 1	4 1	10	14	17	12	2 5	5	5	14	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1 1	. 1	. 1			1	1	1

- All isolates are assigned to specific Complex Types (CTs)
- Different cgMLST schemes use different cut-off values for new CTs

Core genome MLST (cgMLST)


Center for Ger	nomic Epidemic	ology	
Home	Services	Publications	Contact

cgMLSTFinder 1.2

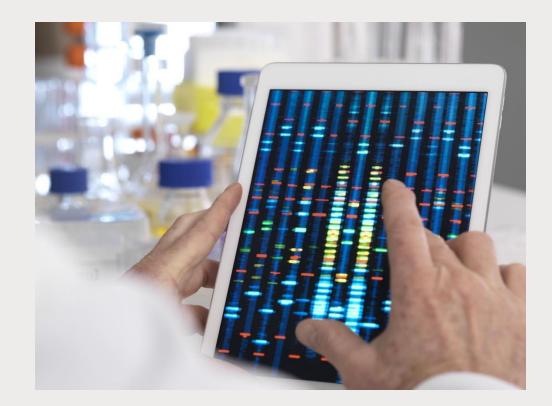
Service	Instructions	Output	Article abstract	Citations
	version: 1.0.1 (20 e: Available here)21-08-29)		
Database				
Select sp				
	bectes bbacter (PubMLS	T)	~	
Input file	e(s)			
		e supported	both as plain text a	and gzipped files. Data from several isolates can be uploaded together.
P Ch	oose File(s)			

Core Genome MLST (cgMLST)

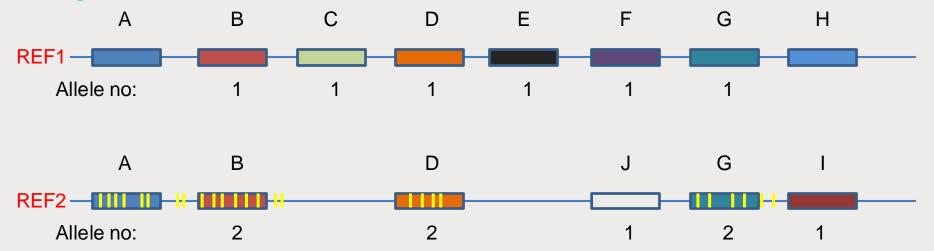
Core Genome MLST (cgMLST)

Main advantages

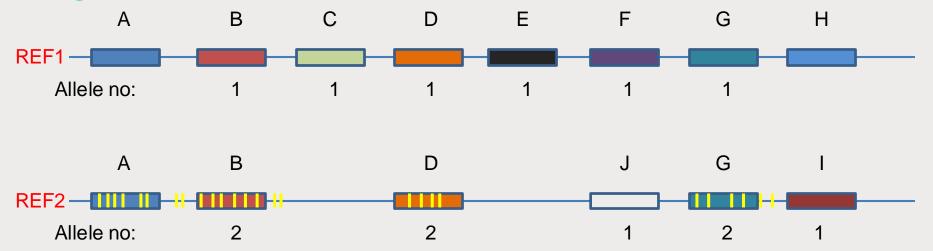
- Common nomenclature (Cluster types)
- Fixed set of reference genes
- Recombination has been filtered out
- Curated database
- Fast, as it runs on draft assemblies


Main disadvantages

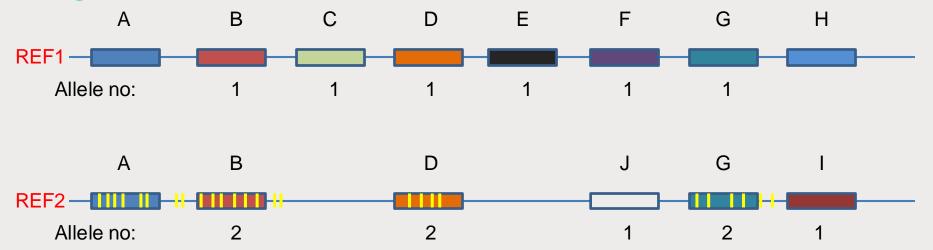
- Requires a validated cgMLST scheme
- May be sensitive to assembly method
- Requires a curator to manage the database
- The discriminatory power may be a bit lower than for SNP analysis
- Have a tendency to drift over time especially in long-lasting outbreaks


SNP analysis practical considerations

- Choosing the best reference
- Global SNP vs HQ SNP analysis
- Detecting contamination
- Recombination events

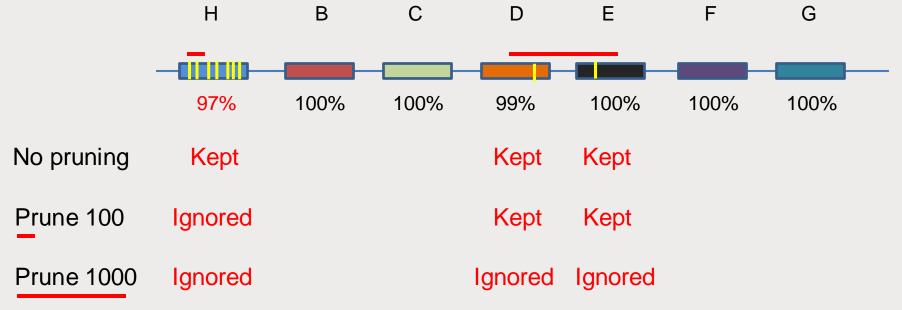

Choosing the best reference

- In general, a closely related reference is desired.
- A best match in NCBI RefSeq can be searched using KmerFinder.
- Complete genomes can also be searched at NCBI (but is not easy to use).
- A draft genome of the index isolate can be considered for use.
- Or you can make your own complete genome by using MinION or PacBIO.


Choosing the best reference

- In general, a closely related reference is desired.
- A best match in NCBI RefSeq can be searched using KmerFinder.
- Complete genomes can also be searched at NCBI (but is not easy to use).
- A draft genome of the index isolate can be considered for use.
- Or you can make your own complete genome by using MinION or PacBIO.

Choosing the best reference


- In general, a closely related reference is desired.
- A best match in NCBI RefSeq can be searched using KmerFinder.
- Complete genomes can also be searched at NCBI (but is not easy to use).
- A draft genome of the index isolate can be considered for use.
- Or you can make your own complete genome by using MinION or PacBIO.

Recombination events

- Horizontal gene transfer
- Repetitive elements (IS-elements, AMR genes ect..)
- Gene duplication and diversification

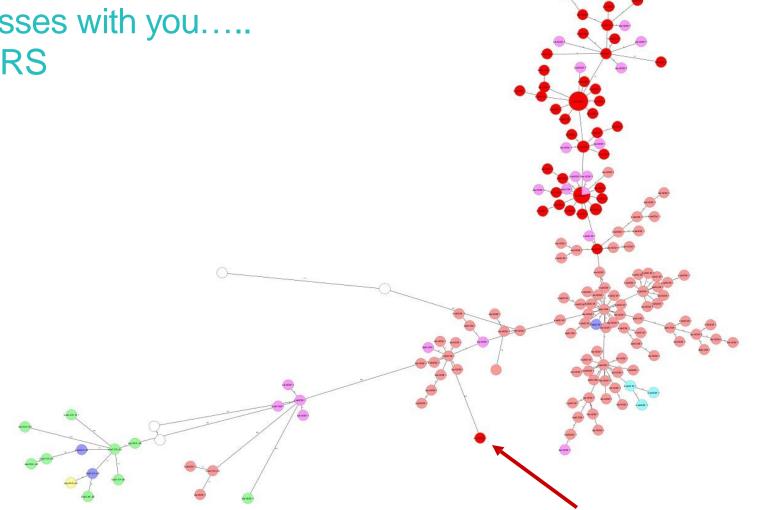
Can to some extent be removed by using bioinformatic tools such as GUBBINS or by ignoring SNPs that are "close" to each other (called *pruning*).

What's in a SNP?

352

A.C. Schürch et al. / Clinical Microbiology and Infection 24 (2018) 350-354

Table 1


Examples of relatedness criteria for wg/cgMLST and SNP typing schemes of representative clinically relevant bacteria

Organism	Relatedness threshold ^a		References
	wg/cgMLST (allele) SNPs		
Acinetobacter baumannii	≤8	≤3	[25,26]
Brucella spp.	Epidemiologic validation in progress ^b		http://www.applied-maths.com/applications/wgmlst
Campylobacter coli, C. jejuni	≤14	≤15	[27,28]
Cronobacter spp.	Epidemiologic validation in progress ^b		http://www.applied-maths.com/applications/wgmlst
Clostridium difficile	Epidemiologic validation in progress ^b	≤ 4	[29], http://www.cgmlst.org/ncs, http://www.applied- maths.com/applications/wgmlst
Enterococcus faecium	<20	<16	[30]
Enterococcus raffinosus	Epidemiologic validation in progress ^b	210	http://www.applied-maths.com/applications/wgmlst
Escherichia coli	<10	≤10	[31,32], https://enterobase.warwick.ac.uk/
Francisella tularensis	si	<u></u>	[33,34]
Klebsiella oxytoca	Epidemiologic validation in progress ^b		http://www.applied-maths.com/applications/wgmlst
Klebsiella pneumonia	≤10	≤18	[35,36]
Legionella pneumophila	≤4	≤15	[37]
Listeria monocytogenes	≤10	≤3	[38,39]
Mycobacterium abscessus		≤30	[40]
Mycobacterium tuberculosis	≤12	≤12	[41]
Neisseria gonorrhoeae	Epidemiologic validation in progress ^b	≤14	[42], http://www.applied-maths.com/applications/wgmlst
Neisseria meningitidis	Epidemiologic validation in progress ^b		http://www.cgmlst.org/ncs
Pseudomonas aeruginosa	≤14	≤37	[31,43]
Salmonella dublin	Epidemiologic validation in progress ^b	≤13	[44], https://enterobase.warwick.ac.uk/
Salmonella enterica	Epidemiologic validation in progress ^b	≤4	[45], http://www.cgmlst.org/ncs, http://www.applied- maths.com/applications/wgmlst, https://enterobase.warwick.ac.uk
Salmonella typhimurium	Epidemiologic validation in progress ^b	≤2	[46], https://enterobase.warwick.ac.uk/
Staphylococcus aureus	≤24	≤15	[47,48]
Streptococcus suis		≤21	[49]
Vibrio parahaemolyticus	≤10		[50]
Yersinia spp.	ō		[51]

All the second s

When nature messes with you..... HYPERMUTATORS

When nature messes with you. HYPERMUTATORS

Targets of Distance Columns (CPO C. freundii ST18)

Right-click on the allele type columns to jump to the according contig position in the Sample

arget	Begin	End	GenBank gene	GenBank product	GenBank note	GenBank protein_id	200117_A19 /	AMA003417	AMA003565	CPO20190159	AMA00338
.322_RS02285	465,622	467,868		phosphoenolpyruvateprotein phosphotransferase PtsP	member of a	WP_003033984.1	? (failed)	1	1	1	1
.322_RS03425	716,674	721,020	85. 17.	autotransporter domain-containing protein	Derived by a	WP_071684359.1	? (failed)	1	1	1	? (not found
.322_RS03765	802,371	803,735		PTS sugar transporter subunit IIC	Derived by a	WP_054528657.1	? (failed)	1	? (not found)	1	1
.322_RS04195	912,678	914,693		tRNA(Met) cytidine acetyltransferase TmcA	cetylates the	WP_054528641.1	? (failed)	1	1	1	1
.322_RS05765	1,252,228	1,254,714		fimbrial assembly protein	Derived by a	WP_054528576.1	? (failed)	1	1	1	1
.322_RS06635	1,433,991	1,435,370	с. 17.	cobyrinic acid a,c-diamide synthase	Derived by a	WP_044701540.1	? (failed)	1	1	1	1
.322_RS06975	1,490,987	1,491,643	2	DNA-binding response regulator	Derived by a	WP_003030486.1	? (failed)	1	1	1	1
.322_RS09275	1,966,895	1,967,473		TetR family transcriptional regulator	Derived by a	WP_046670695.1	? (failed)	1	1	1	1
.322_RS09820	2,083,766	2,084,500	8	DNA-binding response regulator	Derived by a	WP_003836390.1	? (failed)	1	1	1	1
.322_RS11920	2,514,178	2,514,801	89. az	DSBA oxidoreductase	Derived by a	WP_003035975.1	? (failed)	1	1	1	1
.322_RS12760	2,702,258	2,703,679		2-oxoglutarate/malate translocator	Derived by a	WP_003837022.1	? (failed)	1	1	1	1
.322_RS13805	2,920,181	2,921,314		LPS O-antigen length regulator	Derived by a	WP_054528176.1	? (failed)	1	1	1	1
.322_RS14935	3,176,896	3,177,909		4-hydroxy-2-oxovalerate aldolase	Derived by a	WP_003021379.1	? (failed)	1	1	1	1
.322_RS15475	3,301,194	3,301,901	8. 17	flagellar basal body L-ring protein	Derived by a	WP_042270212.1	? (failed)	1	1	1	1
.322_RS15765	3,357,582	3,359,564		type IV secretion protein Rhs	Derived by a	WP_072143931.1	? (failed)	1	1	1	1
.322_RS19670	4,225,537	4,226,988		potassium transporter	Derived by a	WP_003017848.1	? (failed)	1	1	1	1
.322_RS21515	4,624,296	4,625,513	0	MFS transporter	Derived by a	WP_054528867.1	? (failed)	1	1	1	1
.322_RS07405	1,575,702	1,576,793	5. 17	enterohemolysin	Derived by a	WP_054528497.1	? (not found)	? (not found)	? (not found)	? (not found)	? (not found
322_RS07605	1,603,957	1,604,262		hypothetical protein	Derived by a	WP_057101149.1	? (not found)	? (not found)	? (not found)	? (not found)	? (not found
.322_RS08700	1,830,199	1,830,762		hypothetical protein	Derived by a	WP_003843940.1	? (not found)	? (not found)	? (not found)	? (not found)	? (not found
.322_RS17560	3,773,522	3,773,764		transcriptional regulator	Qin prophag	WP_003839576.1	? (not found)	1	? (not found)	? (not found)	1
322_RS22180	4,766,146	4,767,330	9. 17	elongation factor Tu	Derived by a	WP_003031109.1	? (not found)	? (not found)	? (not found)	? (not found)	? (not found
.322_RS06380	1,382,478	1,383,593		amino acid oxidase	Derived by a	WP_054528547.1	? (not found)	1	? (not found)	? (not found)	? (not found
.322_RS17175	3,686,035	3,686,850	-	AraC family transcriptional regulator	Derived by a	WP_054528023.1	? (not found)	1	1	1	1
322_RS17930	3,844,410	3,846,275		DNA mismatch repair protein MutL 🚤	Derived by a	WP_054527983.1	? (not found) 🛛 👝	1	1	1	1
.322_RS20890	4,482,716	4,483,960		O-antigen polymerase	Derived by a	WP_046671022.1	? (not found)	1	1	? (not found)	? (not found
.322_RS22035	4,737,170	4,739,713		nitrite reductase large subunit	Derived by a	WP_003023592.1	? (not found)	1	1	1	1
.322_RS23080	211,671	211,868		hypothetical protein	Derived by a	WP_072143936.1	1	1	1	1	1
.322_RS23130	545,890	546,069	0	hypothetical protein	Derived by a	WP_071524456.1	1	1	1	? (not found)	1
322_RS02845	588,933	589,343	5. 17	formate hydrogenlyase maturation protein HycH	required for	WP_016150885.1	1	2		1	2
.322_RS03030	623,789	624,124		L-valine transporter subunit YgaH	Derived by a	WP_054528723.1	1	1	? (not found)	? (not found)	1
.322_RS03050	627,414	628,478		proline/betaine ABC transporter permease ProW	Derived by a	WP_003846040.1	1	1	? (not found)	? (not found)	1
.322_RS03070	633,115	633,525	nrdI	ribonucleotide reductase assembly protein NrdI	in Salmonella	WP_003037273.1	1	1	? (not found)	? (not found)	1
322 RS03235	667,222	668,508	0	capsular polysaccharide biosynthesis protein	Derived by a	WP 003839728.1	1	1	1	1	1

When nature messes with you. HYPERMUTATORS

Targets of Distance Columns (CPO C. freundii ST18)

Right-click on the allele type columns to jump to the according contig position in the Sample

rget	Begin	End	GenBank gene / GenBank product	GenBank note GenBank	pro ein_i	d 20	0117_A19_22552	AMA003417	AMA003565	CPO20190159	AMA003382
22_RS23015	4,734,020	4,734,190	DUF4223 domain-containing protein	Derived by a WP_07080	82 8.1	1		1	1	? (not found)	1
22_RS22140	4,760,051	4,760,869	peptidyl-prolyl cis-trans isomerase	rotamase; D WP_00302	236 1.1	1		1	1	1	1
22_RS06880	1,473,514	1,474,512	flagellar motor switch protein FliG	Derived by a WP_0030:	804 3.1	2		1	? (not found)	2	1
22_RS07395	1,575,127	1,575,330	hypothetical protein	Derived by a WP_0545	284 9.1	2		2	? (not found)	2	2
22_RS05555	1,207,439	1,208,275	S-formylglutathione hydrolase	Derived by a WP_0545	285 1.1	2		? (not found)	? (not found)	? (not found)	? (not found
22_RS07680	1,614,513	1,617,746	host specificity protein	Derived by a WP_05452	284 4.1	2		1	1	1	1
22_RS23505	2,199,438	2,200,406	hypothetical protein	Derived by a WP_0482	336 6.1	2		2	2	? (not found)	? (not found
22_RS13800	2,919,337	2,920,134	iron-enterobactin transporter ATP-binding protein	with FepBDE WP_0038	174 9.1	2		2	2	2	2
22_RS14230	3,021,614	3,022,951	putative heme utilization radical SAM enzyme HutW	Derived by a WP_0329	187.9.1	2		2	2	2	2
22_RS16445	3,516,539	3,518,305	peptidoglycan glycosyltransferase FtsI	penicillin-bind WP_0030	187 3.1	2		1	1	1	1
22_RS21860	4,701,589	4,702,308	DNA-binding response regulator	Derived by a WP_0011	577 1.1	2		1	2	2	1
22_RS07400	1,575,323	1,575,667	hypothetical protein	Derived by a WP_05452	284 8.1	3		3	? (not found)	3	3
322_RS03490	747,132	747,476	outer membrane protein assembly factor BamE	Derived by a WP_0038	264 1.1	3		1	1	1	1
322_RS03980	852,238	853,089	3-mercaptopyruvate sulfurtransferase	Derived by a WP_00303	377 1.1	3		1	1	1	1
22_RS12515	2,648,226	2,649,140	LysR family transcriptional regulator	Derived by a WP_0038	369 7.1	3		3	3	3	3
22_RS19595	4,210,147	4,210,662	GTPase-activating protein	Derived by a WP_0161	512 3.1	3		1	1	1	1
22_RS23220	978,050	978,250	hypothetical protein	Derived by a WP_0715	243 5.1	4		1	? (not found)	1	1
22_RS22970	2,993,272	2,995,080	hypothetical protein	Derived by a WP_0634	62 6.1	4		1	1	1	? (not found
22_RS15095	3,212,238	3,213,065	ABC transporter	Derived by a WP_04666	97 8.1	4		1	1	1	1
22_RS15610	3,324,822	3,325,604	flagellar biosynthetic protein FliR	Derived by a WP_00384	138 9.1	5		1	1	1	1
22_RS06570	1,422,859	1,423,350	microcompartment protein PduM	Derived by a WP_00383	390 4.1	5		1	1	1	1
22_RS07180	1,531,973	1,532,617	protein phosphatase CheZ	Derived by a WP_00303	846 9.1	5		1	1	1	1
22_RS10990	2,329,185	2,330,675	sensor domain-containing diguanylate cyclase	Derived by a WP_0161	501 2.1	5		1	1	1	1
22_RS11990	2,527,371	2,528,186	histidinol-phosphatase	Derived by a WP_0482	334.5.1	5		1	1	1	1
322_RS14630	3,109,037	3,109,486	NrdR family transcriptional regulator	Derived by a WP_00303	215 1.1	5		1	1	1	1
22_RS16965	3,641,128	3,642,201	patatin family protein	Derived by a WP_00383	372 7.1	5		1	1	1	1
22_RS17340	3,721,589	3,722,332	hypothetical protein	Derived by a WP_0545	286 6.1	5		1	1	1	1
22_RS00135	16,098	16,670	L-threonylcarbamoyladenylate synthase type 1 TsaC	Derived by a WP_0038	121 8.1	6		1	1	1	1
22_RS00920	179,070	181,364	formate acetyltransferase	Derived by a WP_00303	248 1.1	6		1	1	1	1
22_RS01355	273,926	275,722	aryl-sulfate sulfotransferase	Derived by a WP_05453	287 8.1	6		1	1	1	1
22_RS02250	457,972	460,131	bifunctional 2-acylglycerophosphoethanolamine acyltransferas.	Derived by a WP_00303	339 9.1	6		1	1	1	1
22_RS02540	523,945	524,727	tRNA pseudouridine(65) synthase TruC	Derived by a WP_0161	509.4.1	6		1	1	1	1
22_RS02590	538,450	540,087	CTP synthetase	Derived by a WP_00303	341 7.1	6		1	1	1	1
22_RS02715	563,064	564,491	phenolic acid decarboxylase	Derived by a WP_05453	287 3.1	6		1	1	1	1
22_RS03885	833,772	835,409	ribulokinase	Derived by a WP_0466	701 2.1	6		1	1	1	1
22_RS04140	902,354	903,817	hypothetical protein	Derived by a WP_04470	017 5.1	6		1	1	1	1
22_RS04435	963,488	964,459	cysteine synthase A	Derived by a WP_00303	880 1.1	6		1	1	1	1
22_RS04845	1,046,871	1,047,764	epimerase	Derived by a WP_00303	281.0.1	6		1	1	1	1
22_RS04915	1,060,772	1,061,989	aminotransferase AlaT	broad specifi WP_00303	280 2.1	6		1	1	1	1
22 RS05165	1,117,880	1,120,516	DNA gyrase subunit A	Derived by a WP 04470	111 9 1	6		1	1	1	1

Let's take a break ③

CSI Phylogeny

Focus on (CSI) phylogeny

- Phylogenetic comparisons allow for determining clusters and clonal spread of microorganisms.
- SNP calling to determine variants in the DNA (Single Nucleotide Polymorphism)
- Different sequencing technologies have systematic biases, making integration of data generated from different platforms difficult.
 - CSIPhylogeny has incorporated two different procedures for identifying variable sites and inferring phylogenies in WGS data across multiple platforms.

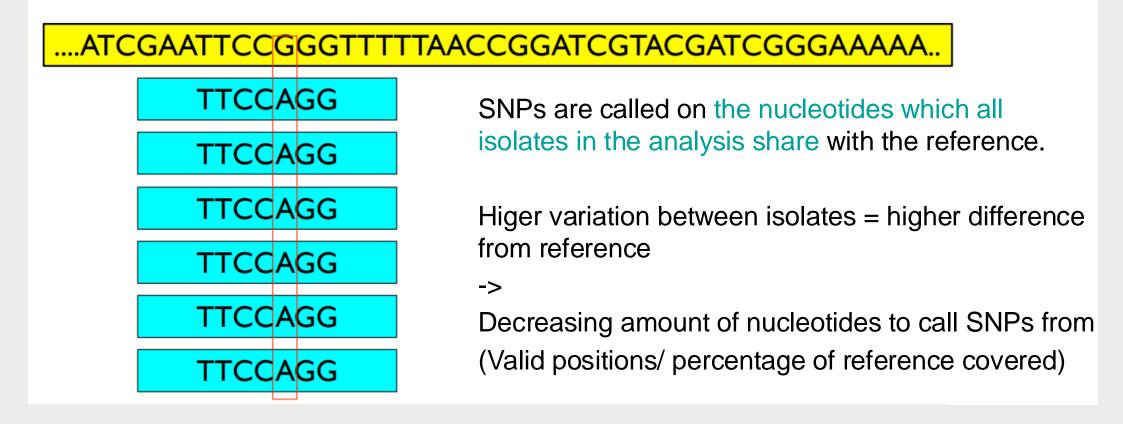
CSI Phylogeny 1.4 (Call SNPs & Infer Phylogeny)

CSI Phylogeny calls SNPs, filters the SNPs, does site validation and infers a phylogeny based on the concatenated alignment of the high quality* SNPs.

https://cge.food.dtu.dk/services/CSIPhylogeny/

Data quality and SNP calling

- Good data quality ensures reliability of your analysis.
 - Poor quality sequences can rarely be used for SNP analysis.
- For assembled contigs good coverage is essential (\geq 30x).
- Consider the quality of your raw data (specifically phred scores).
- CSI Phylogeny SNP filtering criteria:
- SNP quality: ≥30 (Phred score, base call accuracy: 99.9%)
- SNPs with a sequence depth of <10 are removed.
- A SNP is removed if it is <10 bps from the nearest SNP (Pruning) (recombination do not reflect naturally evolved SNPs).


Preferably analyse raw reads for better resolution!

SNPs detection (CSIPhylogeny)

Calling of single nucleotide polymorphism

- Variants in the DNA – compared to reference

CSIphylogeny - webtool

CSI Phylogeny 1.4 (Call SNPs & Infer Phylogeny)

CSI Phylogeny calls SNPs, filters the SNPs, does site validation and infers a phylogeny based on the concatenated alignment of the high quality* SNPs.

Coursera student Info. You can find the CSI phylogeny results from the "Text with Link to files to be used in tutorial" under week 5. Service updated (13:20 17-Nov-2022 GMT+1). Put in upload limit as the number of uploads to CSI Phylogeny caused server to hang. Service updated (10:01 14-Jul-2021 GMT+1). Adjusted allowed running time for matrix jobs, in order to get less matrix execution errors. Service updated (14:45 26-Apr-2019 GMT+1). Fixed a bug which caused the queue to block if certain input files were uploaded.

Input data

Upload reference genome (fasta format) Note: Reference genome must not be compressed

Choose File no file selected Include reference in final phylogeny.

Select min. depth at SNP positions

Select min. relative depth at SNP positions

Select minimum distance between SNPs (prune)

Select min. SNP quality

Select min. read mapping quality

Select min. Z-score

1.50

Ignore heterozygous SNPs

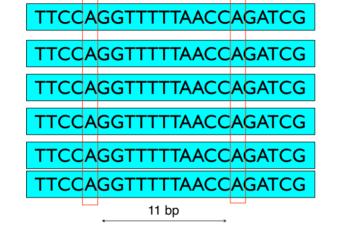
Comment (to yourself)

This comment will appear unaltered on your output page. It has no effect on the analysis.

Use altered FastTree (more accurate)

Note: Read more here

Upload read files and/or assembled genomes (fasta or fastq format)


Please do not upload more than 50 isolates.

Note: Read files must be compressed with gzip (compressed files often ends with .gz). If you get an "Access forbidden. Error 403": Make sure the start of the web adress is https and not just http. Fix it by clicking here.

Pt Isolate File			
Name	Size	Progress	Status
O Upload The Bernove			

Select min. depth at SNP por	siuons
10x	~
Select min. relative depth at	SNP positions
10 %	~
Select minimum distance be	tween SNPs (prune)
10 bp	
	•
Select min. SNP quality	
Select min. SNP quality	
	~
30	✓ Jality
Select min. SNP quality 30 Select min. read mapping qu 25	v µality ✓
30 Select min. read mapping qu	v ⊔ality v
30 Select min. read mapping qu	v ⊔ality v

CSIphylogeny - webtool

- Input data:
- Reference: Must be fasta format
 - Choice of reference impacts the result

Warning !: Uploading too many files can make the job failed ...

- Additional sequences:
 - Can be both fasta and fastq (Illumina)
 - fastq most accurate

Upload reference genome (fasta format) Note: Reference genome must not be compressed.	
Verle fil Des es ildes velet es es e fil	
Vælg fil Der er ikke valgt nogen fil	
Include reference in final phylogeny.	
Select min. depth at SNP positions	
10x V	
Select min. relative depth at SNP positions	
10 %	
Colort minimum distance between SNDs (name)	
Select minimum distance between SNPs (prune)	
Select min. SNP quality	
30 🗸	
Select min. read mapping quality	
25 ~	
Select min. Z-score	
1.96	
1.00	
□ Ignore heterozygous SNPs	
Comment (to yourself)	
This comment will appear unaltered on your output page. It has no effect on the analysis.	_
	_
✓ Use altered FastTree (more accurate) Note: Read more here	
Upload read files and/or assembled genomes (fasta or fastq format) Note: Read files must be compressed with azip (compressed files often ends with .gz).	
f you get an "Access forbidden. Error 403": Make sure the start of the web adress is https and no	ot
Reference in the second	

Name

Output: Variant calling format (VCF)

• Lists of SNPs called for each sequence, compared to the reference

Genome 1 positi	on ref	change	Genome 2 position	ref	change
Ref_genome 10	т	С	Ref_genome 10	Т	С
Ref_genome 20	С	т	Ref_genome 20	С	Т
Ref_genome 30	А	С	Ref_genome 35	С	А
Ref_genome 40	А	С	Ref_genome 40	А	С
Ref_genome 50	G	А	Ref_genome 50	G	А

Output: SNP matrix

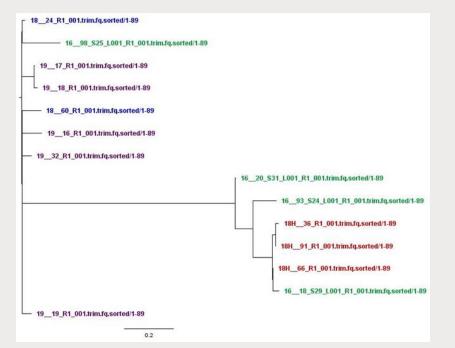
SNP matrix – pairwise comparison of SNPs

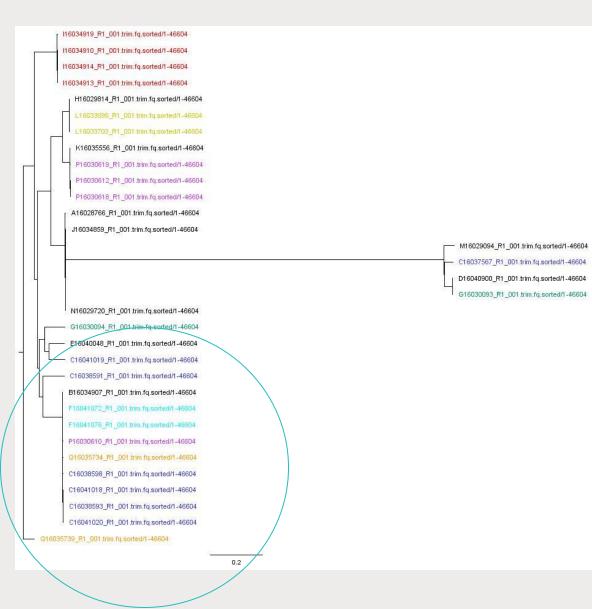
	Strain A	Strain B	S	Strain C	Strain D	Strain E	Strain F	Strain G	Strain H
Strain A		0	406	223	388	326	212	324	321
Strain B	40	6	0	140	51	458	279	459	455
Strain C	22	3	140	0	12	259	85	259	255
Strain D Strain E	38	8	51	12	0	431	257	432	428
	32	6	458	259	431	0	328	6	5
Strain F	21	2	279	85	257	328	0	329	322
Strain G	32	4	459	259	432	6	329	0	9
Strain H	32	1	455	255	428	5	322	9	0

SNP Matrix - example

• Plain text file – open in Excel

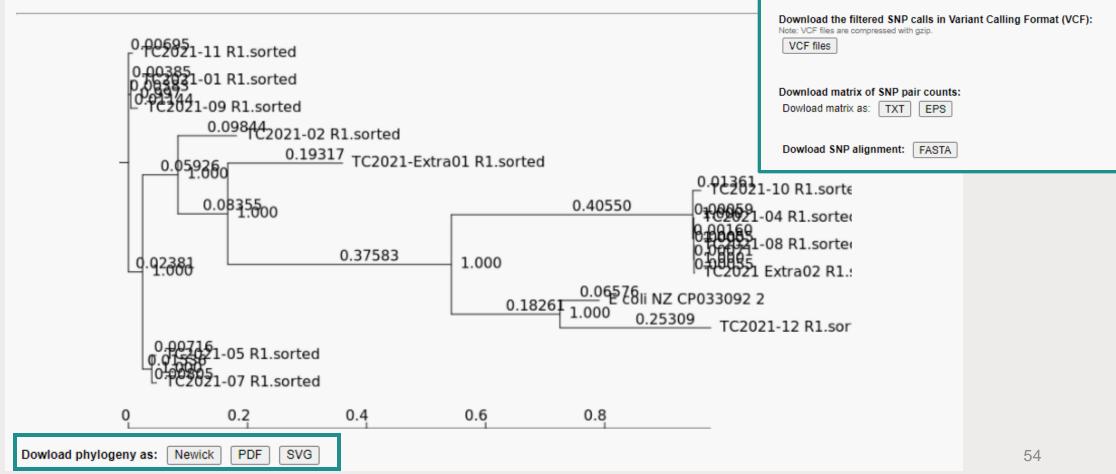
	E_coli_NZ_C1 P033092 2 (TC2021- 05_	TC2021- 07_	TC2021- 08_	TC2021- 09_	TC2021- 10_	TC2021- 11_	TC2021- 12	TC2021- Extra01_	TC2021_Extra0 2
E_coli_NZ_CP03309	—	-	-	_	-	—	—	-	-	-	-	—	_
2_2	0	29753	30187	26060	29484	29404	26067	29809	9 26510	29744	15477	30541	26071
TC2021-01_	29753	0	10003	32323	3125	3150	32332	932	2 32333	862	34921	16898	32336
TC2021-02_	30187	10003	0	32549	9519	9603	32558	10011	32548	3 10017	35335	17244	32562
TC2021-04_	26060	32323	32549	0	32270	32180	80	32312	962	32425	30575	32712	84
TC2021-05_	29484	3125	9519	32270	0	928	32279	3222	2 32278	3113	34970	17024	32283
TC2021-07_	29404	3150	9603	32180	928	6 O	32189	3266	5 32192	. 3170) 34872	16949	32193
TC2021-08_	26067	32332	32558	80	32279	32189	C	32321	. 970) 32434	30577	32718	4
TC2021-09_	29809	932	10011	32312	3222	3266	32321) 32322	1309	34977	16753	32325
TC2021-10_	26510	32333	32548	962	32278	32192	970	32322	2 C	32433	30997	32698	974
TC2021-11_	29744	862	10017	32425	3113	3170	32434	1309	32433	s C	34925	16930	32438
TC2021-12_	15477	34921	35335	30575	34970	34872	30577	34977	' 30997	34925	5 C	35612	30581
TC2021-Extra01_	30541	16898	17244	32712	17024	16949	32718	16753	32698	16930	35612	0	32722
TC2021_Extra02_	26071	32336	32562	84	32283	32193	4	32325	5 974	32438	30581	. 32722	0
min: 4 max: 35612													


SNP Matrix - example


E coli NZ CP03309 TC2021- TC2021 2 2 01 02 04_ 05_ 07 08 09_ 10 11_ 12_ Extra01 a02 E coli NZ CP03 3092 2 0 1000 SNPs 29753 Below TC2021-01 0 100 SNPs TC2021-02 30187 10003 0 Below 10 SNPs TC2021-04 26060 32323 32549 Below 0 3125 9519 32270 TC2021-05 29484 0 TC2021-07 29404 3150 9603 32180 928 0 26067 32332 32558 80 32279 32189 TC2021-08 0 932 10011 32312 3222 3266 32321 TC2021-09 29809 0 26510 32333 32548 **962** 32278 32192 TC2021-10 **970** 32322 0 862 10017 32425 3113 3170 32434 1309 32433 TC2021-11 29744 0 15477 34921 35335 30575 34970 34872 30577 34977 30997 34925 TC2021-12 0 30541 16898 17244 32712 17024 16949 32718 16753 32698 16930 35612 TC2021-Extra01 0 TC2021 Extra02 26071 32336 32562 84 32283 32193 4 32325 **974** 32438 30581 32722 0 min: 4 max: 35612

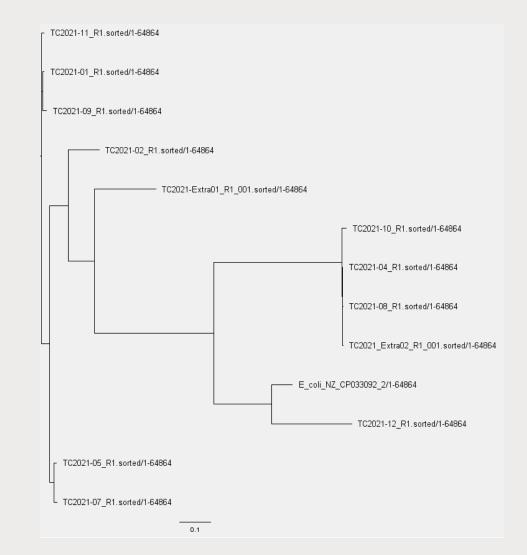
Outputs from SNP analysis: Newick file

- Newick file distance file: phylogeny
 - Visualise using various tools (here: by FigTree)
 - Distance measured on horizontal lines
 - No/short distance = clustering
 - It's a matter of perspective!



CSI output – web interface

CSIPhylogeny Results


The tree presented in the picture below is only meant as a preview. If the tree is meant to be shared or published, we strognly recommend that the 'Newick' file is downloaded and processed using software created for this purpose. We suggest (FigTree).

Newick file

- Text file SNP distances
- · Use various tools to visualise the phylogenetic tree
- Here: FigTree
- <u>https://github.com/rambaut/figtree/releases</u>
- CGE tool:
 - TreeViewer
- Microreact, iTOL...
 - <u>https://microreact.org/upload</u>

CSI outputs

Percentage of reference genome covered by all isolates: 71.4734023710814 3504699 positions was found in all analyzed genomes. Size of reference genome: 4903501

Below is listed the number of positions that are shared and trusted between each isolate and the reference genome.

File	Valid positions	Pct. of reference
TC2021-05_R1.ignored_snps	3978591	81.137762590443
TC2021-12_R1.ignored_snps	4307863	87.852801498358
TC2021-02_R1.ignored_snps	4039549	82.380915186924
TC2021-01_R1.ignored_snps	4048331	82.5600117140794
TC2021-09_R1.ignored_snps	4003614	81.648071449358
TC2021-08_R1.ignored_snps	4101898	83.652435270228
TC2021-10_R1.ignored_snps	4117054	83.961520554395
TC2021-Extra01_R1.ignored_snps	3985371	81.2760311459098
TC2021-07_R1.ignored_snps	4048219	82.5577276317472
E_coli_NZ_CP033092_2.ignored_snps	4903501	100
TC2021-11_R1.ignored_snps	3986463	81.298300948648
TC2021-04_R1.ignored_snps	4142652	84.483555728855
TC2021 Extra02 R1.ignored snps	4067475	82.950426644146

How to choose a reference

- The reference should be somewhat similar to the isolates you test.
 - You can use an internal reference in your collection.
- Better described (annotated strain)
 - Search for something similar in kmerFinder.
- The more distant your reference is from the dataset you analyse, the less bases you will build the SNP analysis on.
 - -> false lower number of SNPs if you choose a bad reference

Kmer-finder – species ID and contamination

KmerFinder 3.2 Instructions Output Article abstract Citations Service Software version: 3.0.2 (2020-10-30) Database version: (2022-07-11) The database can be downloaded here Select database Bacteria organisms \sim Upload file(s) To input the sequences, upload a single FASTA file, or one/two FASTQ file(s), or one interleaved FASTQ file on your local disk by using the applet below. Both assembled genome (in FASTA format) and raw reads single end or paired end (in FASTQ format) are supported. Gzipped FASTA/FASTQ files are also supported. If you get an "Access forbidden. Error 403": Make sure the start of the web adress is https and not just http. Fix it by clicking here. 🛱 Choose File(s) Name Size Progress Status Ec001.illumina_R1.trimmed.fastq.gz 113.15 MB Ec001.illumina_R2.trimmed.fastq.gz 96.00 MB n Remove Upload

Kmer-finder – find a reference

KmerFinder-3.2 Server - Results

KmerFinder 3.2 results:

Template	Num	Score	Expected	Template_length	Query_Coverage	Template_Coverage	Depth	tot_query_Coverage	tot_template
NZ_CP029108.1 Escherichia coli strain AR437 chromosome, complete genome	14538	7191229	231	154903	82.45	99.04	46.42	82.45	99.04
NZ_CP018991.1 Escherichia coli strain Ecol_AZ146 chromosome, complete genome	18701	168049	2651	181206	1.93	3.19	0.93	49.86	51.43
NZ_CP083869.1 Escherichia coli strain NDM6 chromosome, complete genome	24430	68824	2318	156510	0.79	1.20	0.44	64.63	76.67
NZ_CP080139.1 Escherichia coli strain PK8241 chromosome, complete genome	2178	32981	2655	184405	0.38	1.21	0.18	65.23	68.71
NZ_CP031653.1 Escherichia coli strain UK_Dog_Liverpool chromosome, complete genome	9127	27836	2406	161066	0.32	1.00	0.17	81.94	95.45
NC_011586.2 Acinetobacter baumannii AB0057, complete genome	18517	6592	2266	152543	0.08	1.98	0.04	0.54	2.13

https://www.ncbi.nlm.nih.gov

Escherichia coli

ORGANISM Escherichia coli

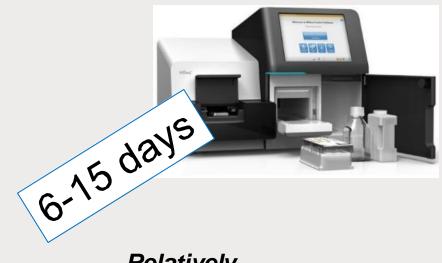
SOURCE

\leftarrow	\rightarrow C		ps://www.ncbi.nlm. nih.gov /nuccore/NZ_CP029108.1	
	An offic	ial website of the United States	government Here's how you know V	
	NIH	National Libra National Center for Bio	ary of Medicine	
	Nucleotid	e Nucleotide	✓ NZ_CP029108	
			Advanced	
(GenBank -		Send to	(.
4	🆺 Due to th	e large size of this record, sec	uence and annotated features are not shown. Use the "Customize view" panel to change the display.	
	Escher	chia coli strain /	AR437 chromosome, complete genome	
I	NCBI Refere	ence Sequence: NZ_CP02	0108.1	
ļ	FASTA Gra	<u>iphics</u>		
(<u>Go to:</u> 🕑			
	LOCUS DEFINITION	-	88906 bp DNA circular CON 25-MAY-2022 AR437 chromosome, complete genome.	Ľ
	ACCESSION VERSION	NZ_CP029108 NZ_CP029108.1		F A
	DBLINK	BioProject: PRJNA224116 BioSample: SAMN07291536		
_		Assembly: GCF_00307381		
	KEYWORDS	RefSeq.		

For this exercise: We have uploaded 2 reference sequences on Sciencedata.dk: One is the best match found by KmerFinder (KmerFinder_ref)

Another is index isolate, hybrid assembled and published (optimal_ref)

KmerFinder_ref.fasta

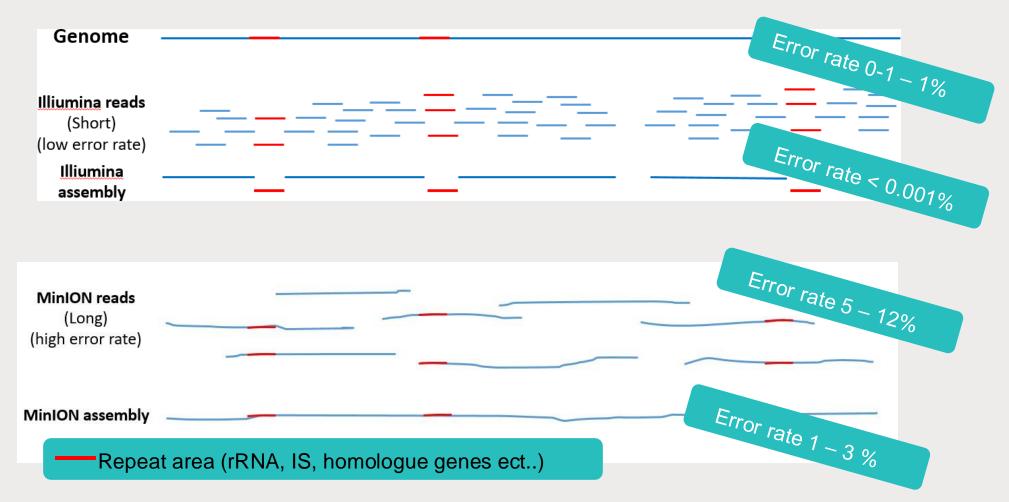

Optimal_ref.fasta

Mintyper

MinION – the new(ish) kid on the block

Relatively..

- low price per isolate
- well-proven technology
- high precision (low error rate)
- Slow (depending on the setup)
 ..but no reads in real-time


Relatively ..

- Low-to medium price per isolate
- experimental technology
- low precision (high error rate)?
- fast
- ..and reads available in real-time

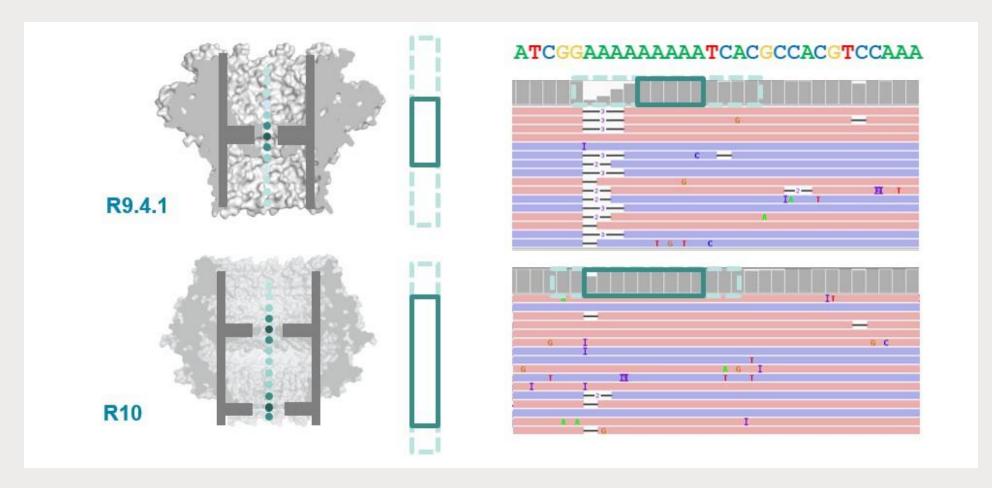
Tools for outbreak detection emerging

Illumina vs. MinION (R9.4.1) data

Illumina vs. MinION data

Illumina raw data

																		С	,																											
AA	A٦	ΓA	C	A	C	GI	6	зт	Т	Т	Ċ	т	G	A	Т	GG	G	C	т	A	A (CA	A A	A	С	A	Α.	TI	٢G	\$A	A	C	A A	A	G	A/	A A	ιT	G	A	CC	CG	A	A	GΑ	A
AA	AT	ΓА	C	A	C	GI	10	зт	Т	Т	Ċ	т	G	A	т	GG	G	т	т	A	A	CA	A A	A	C	A	Α.	TI	٢G	\$A	A	С	A A	A	G	A	A A	١т	G	A	co	CG	A	A	GΑ	A
																								_																						
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A			AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA									000000000000000000000000000000000000000	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA					TTTTTTTTTTTT						000000000000000000000000000000000000000	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	A A A A A A A A A A A A A A A A A A A				AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA				C C C C C C C C C C C C C C C C C C C	A			000000000000000000000000000000000000000	A(A(A(A(A(A(A(A(A(A(A(A(AAAAAAAAAAA	A(A(A(A(A(A(A(A(A(A(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AA AA	Α.	- A																																												
A A	AI	ГА	c	A	C	GI	10) T	1	т					-	_	_					-	-		_		-	-				_	-				-				_	_			G A G A	



Illumina vs. MinION data

MinION raw data AAATACACGTGTT TT-C-T-G-A T-G G G TT-A A C AAAAA C AAATACACGTGTT TT-C-T-G-A T-G G G TT-A A C AAAA C AAATACACGTGTT TT-C-T-G-A T-G G G TT-A A C AAAA C AAATACACGTGTT TT-C-T-G-A T-G G G TT-A A C AAAA C AAATACACGTGTT TT-C-T-G-A T-G G G TT-A A C AAAA CA AAATACACGTGTT TT-C-T-G-A T-G G G TT-A A C AAAA CA AAATACACGTGTT TT-C-T-G-A T-G G G TT-A A C AAAA CA AAATACACGTGTT TT-C-T-G-A T-G G G TT-A A C AAAA CA AAATACACGTGTT TT-C-T-G-A T-G G G TT-A A C AAAA CA <	
AAATACACGTGTT TT - C - T - G - A - T - G G - G - G - T - A - A - C - A - A - C - A AAATACACTTGTGTTTT - C - T - G - A - T - G G - G - G - T - A - A - C - A A - C - A AAATACACGGGTTTTT - C - T - G - A - T - G G - G - G - T - A - A - C - A A - C - A AAATACACGGGTTTTT - C - T - G - A - T - G G - G - G - T - A - A - C - A A - C - A AAATACACGTGTTTTT - C - T - G - A - T - G G - G - G - T - A - A - C - A A - C - A AAATACACGTGTTTTT - C - T - G - A - T - G G - G - G - T - T - A - A - C - A A - A - C - A AAATACACGTGTTTTT - C - T - G - A - T - G G - G - G - T - T - A - A - C - A A - A - C - A AAATACACGTGTTTTT - C - T - G - A - T - G G - G - G - T - T - A - A - C - A A - A - C - A AAATACACGTGTTTTT - C - G - A - T - G - G - G - G - T - T - A - A - C - A A - A - C - A AAATACACGTGTTTTT - C - G - A - T - G - G - G - G - T - T - A - A - C - A A - A - C - A AAATACACGTGTTTTT - C - G - A - T - G - G - G - G - T - T - A - A - C - A - A - C - A A - A - C - A AAATACACGTGTTTTT - C - G - A - T - G - G - G - G - T - T - A - A - C - A - A - C - A A - A - C - A - A - C - A AAATACACGTGTTTTT - C - G - A - T - G - G - G - G - T - T - A - A - C - A - A - C - A A - A - C - A - A - C - A AAATACACGTGTTTTT - C - G - A - T - G - G - G - G - T - T - A - A - C - A - A - C - A <th></th>	
AAATACACGGCGTTTTT-C-T-G-A T-G G G T T-A A C AAAA C-A AAATACACGTGTTTTT-C-T-G-A T-G G G T T-A A C AAAA C-A AAATACACGTGTTTTT-C-T-G-A T-G G G T T-A A C AAAA C-A AAATACACGTGTTTTT-C-T-G-A T-G G G T T-A A C AAAA C-A AAATACACGTGTTTTT-C-T-G-A T-G G G T T-A A C AAAA C-A AAATACACGTGTTTTT-C-T-G-A T-G G G G T T-A A C AAAA C-A AAATACACGTGTTTTT-C-T-G-A G G G T T-A A C AAAA C-A AAATACACGTGTTTTT-C-T-G-A G G G T T-A A C AAA C-A AAATACACGTGTTTTT-C-T-G-A G G G T T-A A C AAA AA AAATACAGGTGTTTTT<	A - T T
AAATACACGTGTTTTT-C-T-G-A-T-G G G T T AAAAA-C-A AAATACACGTGTTTTT-C-T-G-A G G G T T AAAAA-C-A AAATACACGTGTTTTT-C-G-A G G G T T AAAA-C-A AAATACACGTGTTTTT-C-G-A G G G T T AAAA-C-A AAATACACGTGTTTTT-C-G-A G G G T T AAAA-C-A AAATACACGTGTTTTT-C-GA G G G T T AAAA-C-A AAATACACGTGTTTTT-C-GA G G G T AAAA-C-A AAATACACGTGTTTTT-C-GA T G G G T AAAA-C-A AAATACACGTGTTTTT-C-GA G G G T AAAA-C-A AAAA-C-A AAATACACGTGTTTTT-C-GA T G G G T AAAA-C-A AAATACACGTGTTTTT-C-GA T G G G T AAAA-C-A AAATACACGTGTTTTT-C-GA T G G G T AAAA-C-A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	A - T T
AAATACACGTGTTTTT-CT-GAA-TGGGGGGTAAAAACCA AAATACACGTGTTTT-CT-GAA-TGGGGGGTAAAAACCA AAATACACGTGTTTT-CT-GAA-TGGGGGGTAAAAACCA AAATACACGTGTTTT-CT-GAA-TGGGGGGTAAAAACCA AAATACACGTGTTTT-CT-GAA-TGGGGGGTAAAAACCA AAATACACGTGTTTT-CT-GAA-TGGGGGGTAAAAACCA AAATACACGTGTTTT-CT-GAA-TGGGGGGTAAAAACCA AAATACACGTGTTTT-CT-GAA-TGGGGGGTAAAAACCA AAATACACGTGTTTT-CT-GAA-TGGGGGGTAAAAACCA AAATACACGTGTTTT-CT-GAA-TGGGGGGTAAAAACCA AAATACACGTGTTTT-CT-GAA-TGGGGGGTAAAAACCA AAATACACGTGTTTT-CT-GAA-TGGGGGGTAAAAACCA AAATACACGTGTTTT-CT-GAA-TGGGGGGTAAAAACCA AAATACACGTGTTTT-CT-GAA-TGGGGGGTAAAAACCA AAATACACGTGTTTT-CT-GAA-TGGGGGGTAAAAACCA AAATACACGTGTTTT-CT-GAA-TGGGGGGTAAAAACCA AAATACACGTGTTTT-CT-GAA-TGGGGGGTAAAAACCA AAAATACACGTGTTTT-CT-GAA-TGGGGGGTAAAAACCA AAAATACACGTGTTTT-CT-GAA-TGGGGGGTAAAAACCA AAAAAAAAAAAAAAAAAAAAAAA	A - T T
AAATACACGTGTTTTT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-A-A-C-A-A-A-C-A AAATACACGTGTTTTT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-A-A-A-C-A AAATACACGTGTTTTC-T-T-G-A-T-G-G-G-G-T-T-A-A-C-A-A-A-C-A AAATACACGTGTTTC-T-T-G-A-T-G-G-G-G-T-T-A-A-C-A-A-C-A AAATACACGGGGTTTC-T-T-G-A-T-G-G-G-G-T-T-A-A-C-A-A-C-A AAATACACGTGTTTC-T-T-G-A-T-G-G-G-G-T-T-A-A-C-A-A-C-A AAATACACGTGTTTTC-C-T-G-A-T-G-G-G-G-T-T-A-A-C-A-A-C-A AAATACACGTGTTTTC-C-T-G-A-T-G-G-G-G-T-T-A-A-C-A-A-C-A AAATACACGTGTTTTC-C-T-G-A-T-G-G-G-G-T-T-A-A-C-A-A-C-A AAATACACGTGTTTTC-C-T-G-A-T-G-G-G-G-T-T-A-A-C-A-A-C-A AAATACACGTGTTTTC-C-T-G-A-T-G-G-G-G-T-T-A-A-C-A-A-C-A AAATACACGTGTTTTT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-A-A-C-A AAATACACGTGTTTTT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-A-A-C-A AAATACACGTGTTTTT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-A-A-C-A AAATACACGTGTTTTT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-C-AA-A-C-A AAATACACGTGTTTTT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-A-A-C-A AAATACACGTGTTTTT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-C-AA-A-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-C-AA-A-C-A AAATACACGTGTTTTT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-C-AA-A-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-C-AA-A-C-A AAATACACGTGTTTTT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-C-AA-A-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-C-AA-A-C-A AAAA-C-A-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-C-AA-A-C-A AA-A-C-A-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-C-AA-A-C-A AA-A-C-A-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-C-AA-A-C-A AA-A-C-A-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AA-C-A AA-A-C-A-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AA-C-A AA-A-C-A-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AA-C-A AA-A-C-A-C-A	• • • • • • • • • A • T • • T
AAATACACGTGTTTTT-C-T-G-AATGGGGGGGGGGTT-T-AAAACCAAAACCA AAATACACGTGTTTTT-C-T-G-AATGGGGGGGGGTT-T-AAAACCAAAACCA AAATACACGTGTTTTT-C-T-G-AATGGGGGGGGGGTT-T-AAAACCAAAACCA AAATACACGTGTTTTT-C-T-G-AATGGGGGGGGGGGGGG	
AAATACACGTGTT TT - C - T - G - A - T - G - G - G - T - T - A - A - C - AA - A - C - A AAATACACGTG TT - C - T - G - A - T - G - G - G - T - T - A - A - C - AA - A - C - A AAATACACGTG TT - T - A - A - C - AA - A - C - A AA - A - C - A - A - C - A - A - C - A - A	
AAATACACGTGTTTTC-T-G-A-T-G-G-G-G-T-T-A-A-C-AAAA-C-A AAATACACGTGTTTTC-T-G-A-T-G-G-G-G-T-T-A-A-C-AAAA-C-A AAATACACGTGTTTTC-T-G-A-T-G-G-G-G-T-T-A-A-C-AAAA-C-A AAATACACGTGTTTTC-T-G-A-T-G-G-G-G-T-T-A-A-C-AAA-C-A AAATACACGTGTTTTC-T-G-A-T-G-G-G-G-T-T-A-A-C-AAA-C-A AAATACACGTGTTTTC-T-G-A-T-G-G-G-G-T-T-A-A-C-AAA-C-A AAATACACGTGTTTTC-T-G-A-T-G-G-G-G-T-T-A-A-C-AAA-C-A AAATACACGTGTTTTC-T-G-A-T-G-G-G-G-T-T-A-A-C-AAA-C-A AAATACACGTGTTTTC-T-G-A-T-G-G-G-G-T-T-A-A-C-AAA-C-A AAATACACGTGTTTTC-T-G-A-T-G-G-G-G-T-T-A-A-C-AAA-A-C-A AAATACACGTGTTTTC-T-G-A-T-G-G-G-G-T-T-A-A-C-AAA-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AAA-C-A AAATACACGTGTTTTC-T-G-A-T-G-G-G-G-T-T-A-A-C-AAA-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AAA-C-A AAATACACGTGTTTTC-T-G-A-T-G-G-G-G-T-T-A-A-C-AAA-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AAA-C-A AAATACACGTGTTTTC-T-G-A-T-G-G-G-G-T-T-A-A-C-AAA-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AAA-C-A AAATACACGTGTTTT-A-A-A-C-AAA-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AAA-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AAA-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AAA-C-A AA-A-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AAA-C-A AA-A-C-A	· A - T T
AAATACACGTGT TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AAA-A-C-A AAATACACGTGTT TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AA-A-C-A AAATACACGTGTT TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AA-A-C-A AAATACACGTGTT TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AA-A-C-A AAATACACGTGTT TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AA-A-C-A AAATACACGTGTT TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AA-A-C-A AAATACACGTGTT TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AA-A-C-A AAATACACGTGT TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AA-A-C-A AAATACACGTGT TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AA-A-C-A AAATACACGTGT TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AA-A-C-A AAAA-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AA-A-C-A AAAA-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AA-A-C-A AAAA-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AA-A-C-A AAAA-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AA-A-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AA-A-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AA-A-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AA-A-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AA-A-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AA-A-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AA-A-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AA-A-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AA-C-AA-C	A - T T
AAATACACGTGTT TT-C-T-G-A-T-G-G-G-G-T-T-A-A-C-AAA-A-C-A AAATACACGTGTT TT-C-T-G-A-T-G-G-G-G-T-T-A-AA-C-AA-A-C-A AAATACACGTGTT TT-C-T-G-A-T-G-G-G-G-T-T-A-AA-C-AA-A-C-A AAATACACGTGTT TT-C-T-G-A-T-G-G-G-G-T-T-A-AA-C-AA-A-C-A TT-CTT-G-A-T-G-G-G-G-T-T-A-AA-C-AA-A-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-AA-C-AA-A-C-A AAATACACGTGT TT-C-T-G-A-T-G-G-G-G-T-T-A-AA-C-AA-A-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-AA-C-AA-A-C-A AAATACACGTGT TT-C-T-G-A-T-G-G-G-G-T-T-A-AA-C-AA-A-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-AA-C-AA-A-C-A AAATACACGTGT TT-C-T-G-A-T-G-G-G-G-T-T-A-AA-C-AA-A-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-AA-C-AA-A-C-A AAATACACGTGT TT-C-T-G-A-T-G-G-G-G-T-T-A-AA-C-AA-A-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-AA-C-AA-A-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-AA-C-AA-A-C-A AAA-A-C-A TT-C-T-G-A-T-G-G-G-G-T-T-A-AA-C-AA-A-C-A AA-A-C-A	
AAATACACGTGTT TT - C - T - G - A - T - G - G - G - T - T - A - A - C - AA - A - C - A AAA - A - T - C - T - G - A - T - G - G - G - T - T - A - A - C - AA - A - C - A AA - A - T - C - T - G - A - T - G - G - G - T - T - A - A - C - AA - A - C - A AA - A - C - A - C - A - A - C - A - A -	· · · · · · · · A · T · · T
AAATACACGTGTT TTC.T.G.A.T.G.G.G.G.G.T.T.A.A.A.C.A AAATACACGTGTT TTC.T.G.A.T.G.G.G.G.T.T.T.A.A.A.C.A AAATACACGTGTT TTC.T.G.A.T.G.G.G.G.T.T.T.A.A.A.C.A TTC.T.G.A.T.G.G.G.G.T.T.T.A.A.A.C.A AAATACACGTGTT TTC.T.G.A.T.G.G.G.G.T.T.T.A.A.A.C.A AAATACACGTGTT TTC.T.G.A.T.G.G.G.G.T.T.T.A.A.A.C.A AAATACACGTGT TTC.T.G.A.T.G.G.G.G.T.T.T.A.A.A.C.A AAATACACGTGT TTC.T.G.A.T.G.G.G.G.T.T.T.A.A.A.C.A AAATACACGTGT TTC.T.G.A.T.G.G.G.G.T.T.T.A.A.A.C.A AAATACACGTGT TTC.T.G.A.T.G.G.G.G.T.T.T.A.A.A.C.A TTC.T.G.A.T.G.G.G.G.T.T.T.A.A.A.A.C.A TTC.T.G.A.T.G.G.G.G.T.T.T.A.A.A.A.C.A TTC.T.G.A.T.G.G.G.G.T.T.A.A.A.A.A.A.A.A.A.A	· A - T T
AAA - A AAA - A AAA TACACGTGTT TT - C - T - G - A - T - G - G - G - G - T - T - A - A - C - AA - A - C - A TT - C - T - G - A - T - G - G - G - G - T - T - A - A - C - AA - A - C - A TT - C - T - G - A - T - G - G - G - G - T - T - A - A - C - AA - A - C - A AA - C - A - C - A - A - C - A - A - C - A AA - C - A - C - A - C - A - C - A - C - A - A	· A - T T
AAA - A AAA T ACACGTGTT TT - C - T - G - A - T - G - G - G - G - T - T - A - A - C - AA - A - C - A TT - C T - G - A - T - G - G - G - G - T - T - A - A - C - AA - A - C - A TT - C T - G - A - T - G - G - G - G - T - T - A - A - C - AA - A - C - A AAA T ACACGTGT TT - C - T - G - A - T - G - G - G - G - T - T - A - A - C - AA - A - C - A TT - C - T - G - A - T - G - G - G - G - T - T - A - A - C - AA - A - C - A TT - C - T - G - A - T - G - G - G - G - T - T - A - A - C - AA - A - C - A TT - C - T - G - A - T - G - G - G - G - T - T - A - A - C - AA - A - C - A TT - C - T - G - A - T - G - G - G - G - T - T - A - A - C - AA - A - C - A TT - C - T - G - A - T - G - G - G - G - T - T - A - A - C - AA - A - C - A TT - C - T - G - A - T - G - G - G - G - T - T - A - A - C - AA - A - C - A TT - C - T - G - A - T - G - G - G - G - T - T - A - A - C - AA - A - C - A TT - C - T - G - A - T - G - G - G - G - T - T - A - A - C - AA - A - C - A TT - C - T - G - A - T - G - G - G - G - T - T - A - A - C - AA - A - C - A TT - C - T - G - A - T - G - G - G - G - G - T - T - A - A - C - AA - A - C - A TT - C - T - G - A - T - G - G - G - G - G - T - T - A - A - C - AA - A - C - A TT - C - T - G - A - T - G - G - G - G - G - T - T - A - A - C - A - A - C - A - A - C - A TT - C - T - G - A - T - G - G - G - G - G - T - T - A - A - C - A - A - C - A - A - C - A - A	· · · · · · · · · · · · · · · · · · ·
AAATACACGTGTT TTC.TG.AT.G.G.G.G.G.TT.A. AC.A TTCTTG.AT.G.G.G.G.T.TT.A. AC.A AAATACACGTGT TT.G.AT.G.G.G.G.T.TT.A. AC.A AAATACACGTGT TT.G.AT.G.G.G.G.T.TT.A. AC.A AAATACACGTGT TT.G.AT.G.G.G.G.T.TT.A. AC.A AAATACACGTGT TT.G.AT.G.G.G.G.T.T.T.A. AC.A TTC.T.G.AT.G.AT.G.G.G.G.T.T.A. AC.A TTC.T.G.AT.G.G.G.G.G.T.T.A. AC.A TTC.T.G.AT.G.G.G.G.T.T.A. AC.A TTC.T.G.AT.G.G.G.G.T.T.A. AC.A TTC.T.G.AT.G.G.G.G.T.T.A. AC.A TTC.T.G.AT.G.G.G.G.T.A. TA. TTC.T.G.AT.G.G.G.G.T.A. TA. TTC.T.G.AT.G.G.G.G.T.A. TA. TTC.T.G.AT.G.G.G.G.G.T.A. TA. TTC.T.G.AT.G.A. GC.A. TTC.T.G.AT.G.A. GC.A. TC.T.G.AT.G.A. GC.A. TC.T.G.A. GC.A. TC.T.G.A. GC.A. TC.T.G.A. GC.A. TC.T.G.A. GC.A. TC.T.G.A. GC.A. T	Δ.Τ.Τ
TT - CTT - G - A - T - G - G - G - T - T - A - A - C - A - A - C - A A A A T A C A C GT GT TT - C - T - G - A - T - G - G - G - G - T - T - A - A - C - A A A A T A C A C GT GT TT - C - T - G - A - T - G - G - G - G - T - T - A - A - C - A TT - C - T - G - A - T - G - G - G - G - T - T - A - A - C - A TT - C - T - G - A - T - G - G - G - G - T - T - A - A - C - A TT - C - T - G - A - T - G - G - G - G - T - T - A - A - C - A - A - C - A TT - C - T - G - A - T - G - G - G - G - T - T - A - A - C - A - A - C - A TT - C - T - G - A - T - G - G - G - G - T - T - A - A - C - A - C - A - C - A TT - C - T - G - A - T - G - G - G - G - T - T - A - A - C - A - A - C - A TT - C - T - G - A - T - G - G - G - G - T - T - A - A - C - A - C - A - C - A - C - A - C - A TT - C - T - G - A - T - G - G - G - G - G - T - T - A - A - C - A - C - A - C - A TT - C - T - G - A - T - G - G - G - G - G - T - T - A - A - C - A - C - A - C - A TT - C - T - G - A - T - G - G - G - G - G - T - T - A - A - C - A - C - A - C - A T - C - T - G - A - T - G - G - G - G - G - T - T - A - A - C - A -	
AAATACACGTGT T G.A.	A - T T
AAATACACGIGI T G. A. T. G. A. T. G. G. G. G. G. T. T. A. A. A. C. A. TT - C. T. G. A. T. G. G. G. G. G. T. T. A. A. A. A. C. A. T. T. A. A. A. C. A. TT - C. T. G. A. T. G. G. G. G. G. T. G. T. A. A. A. C. A. T. A. A. A. C. A. TT - C. T. G. A. T. G. G. G. G. G. T. G. T. A. A. A. C. A. T. T. A. A. A. C. A. TT - C. T. G. A. T. G. G. G. G. G. T. G. T. A. A. A. C. A. T. T. A. A. A. C. A. TT - C. T. G. A. T. G. G. G. G. G. T. G. T. A. A. A. C. A. T. T. A. A. A. C. A. TT - C. T. G. A. T. G. G. G. G. G. T. T. A. A. A. C. A. T. T. A. A. A. C. A. TT - C. T. G. A. T. G. G. G. G. G. T. T. A. A. A. C. A. T. T. A. A. A. C. A.	· A - T T
TT - C - T - G - A T - G G G G T T - A A A TT - C - T - G - A T - G G G G T - A A C AA - A C - A TT - C - T - G - A T - G G G G T - A A C AA - A C - A TT - C - T - G - A T - G G G	
TT - C - T - G - A T - G G G T - A A C AA - A -	· A - T T
TT - C - T - G - A T - G G G T - A A C A A - A C - A TTT - C - T - G - A T - G G G T T - A A C A A - A -	· · · · · · · · · · · · · · · · · · ·
TTT-C-TG-AT-GGTT-AA	
	A - T T
	· · · · · · · · A · T · · T
TTC-TG-A <mark>-T-</mark> GT-AAAAA-AC-A	• • • • • • • • • A • T • • T
ТТС-ТG-А <mark>——</mark> GGТТ-АА <mark>—С</mark> АА-АС-А ТТ Т- АСАА-АС-А АА-АС-А	

R9.4.1 vs. R10.4.1 pore

Choice of flowcell/pore

bioRχiv

THE PREPRINT SERVER FOR BIOLOGY

3

- 1 Oxford Nanopore R10.4 long-read sequencing enables near-perfect
- 2 bacterial genomes from pure cultures and metagenomes without

short-read or reference polishing

- 4 Mantas Sereika^{a*}, Rasmus Hansen Kirkegaard^{a,b*}, Søren Michael Karst^a, Thomas Yssing
- 5 Michaelsen^a, Emil Aarre Sørensen^a, Rasmus Dam Wollenberg^a and Mads Albertsen^a
- 6 Center for microbial communities, Aalborg University, Denmark
- 7 ^bJoint Microbiome Facility, University of Vienna, Austria
- 8 °DNASense ApS, Denmark
- 9 *These authors contributed equally to the paper
- 10 **Corresponding author ma@bio.aau.dk

https://www.biorxiv.org/content/10.1101/2021.10.27.466057v2

20	0.01000
19	0.01259
18	0.01585
17	0.01995
16	0.02512
15	0.03162
14	0.03981
13	0.05012
12	0.06310
11	0.07943
10	0.10000
9	0.12589
8	0.15849
7	0.19953
6	0.25119
5	0.31623
4	0.39811
3	0.50119
2	0.63096
1	0.79433

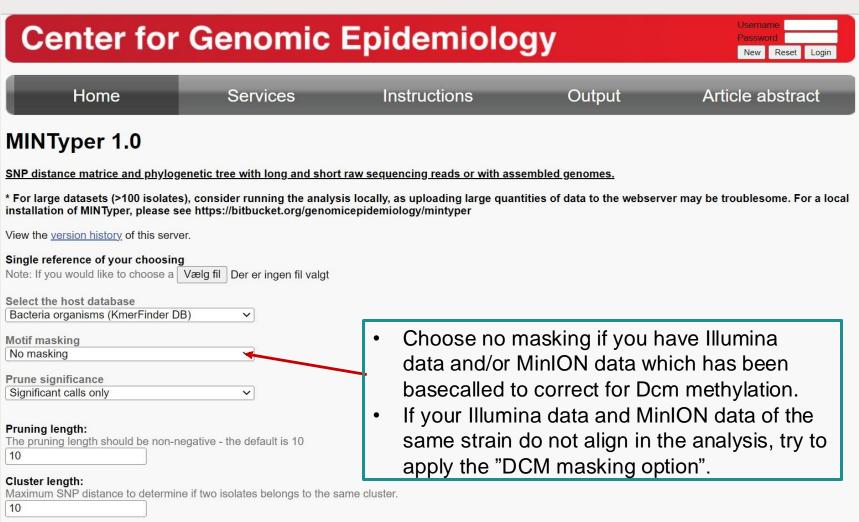
The MINTyper tool at CGE Center for Genomic Epidemiology Username Person of New Reset Login Home Services Instructions Output Article abstract MINTyper 1.0 MINTyper 1.0 Mintyper 1.0 Mintyper 1.0

SNP distance matrice and phylogenetic tree with long and short raw sequencing reads or with assembled genomes.

- Will only accept raw data (Illumina and ONT)
- Will fail if not all input data (strains) cover at least 50% of the reference
- Allows for the user to give her own reference genome (fasta format)
- Allows the user to filter out Dcm methylation signals, which may cause issues with the fast basecaller (at least in old versions of Guppy).
- Exists as a command-line tool (genomicepidemiology / mintyper Bitbucket).

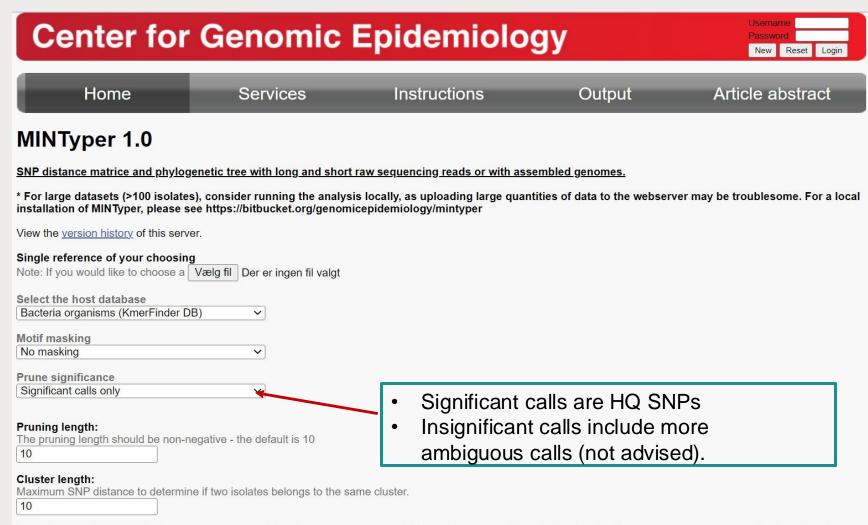
MINTyper	
V1.0	

Center for	Genomic	Epidemiolo	gy	Usemame Password New Reset Login
Home	Services	Instructions	Output	Article abstract
MINTyper 1.0				
	consider running the analys https://bitbucket.org/genom			ver may be troublesome. For a loc
Select the host database Bacteria organisms (KmerFinder DB) No masking Prune significance Significant calls only Pruning length: The pruning length should be non-neg 10	✓	 MINTyper can s the NCBI RefSe (KmerFinder DE You can also u (e.g. a draft ge your index isola 	eq genome data 3) for the best r upload your ov mome of what	abase eference. vn reference


Cluster length: Maximum SNP distance to determine if two isolates belongs to the same cluster.

10

Input files: fastq and fasta formats are supported, fastq are recommended. Assemblies are not handled yet. Note: 2 or more samples are required as input!


MINT	yper
V1.	.0

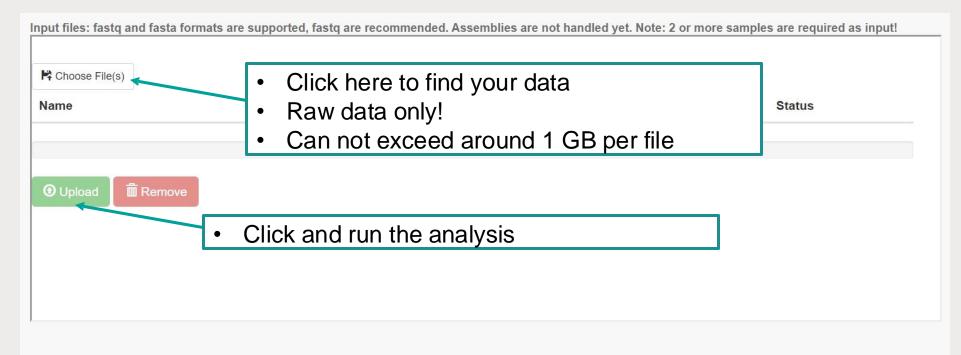
Input files: fastq and fasta formats are supported, fastq are recommended. Assemblies are not handled yet. Note: 2 or more samples are required as input!

MINT	yper
V1.	0

Input files: fastq and fasta formats are supported, fastq are recommended. Assemblies are not handled yet. Note: 2 or more samples are required as input!

MINTyper	•
V1.0	

Home						
		Services	Instru	ictions	Output	Article abstract
MINTyper 1	1.0					
SNP distance matrice	and phylogenetic t	ree with long and shor	<u>t raw sequencing</u>	<u>g reads or with as</u>	sembled genomes.	
		ider running the analy :://bitbucket.org/genon			ntities of data to the webserv	er may be troublesome. For a l
View the <u>version histor</u>	<u>y</u> of this server.					
Single reference of you would like	-	Der er ingen fil valgt				
Select the host datab Bacteria organisms (K		V				
Motif masking						
No masking		~				
Prune significance Significant calls only		~				



MINTyper
V1.0

Home	Services	Instructions	Output	Article abstrac
NTyper 1.0				
••	genetic tree with long and short	raw sequencing reads or with as	sembled genomes.	
	es), consider running the analysises), consider running the analysis		ntities of data to the webser	ver may be troublesome. For
the <u>version history</u> of this serv		,		
le reference of your choosin If you would like to choose a	ig Vælg fil Der er ingen fil valgt			
ct the host database				
teria organisms (KmerFinder I	DB) ~			
f masking nasking	~			
e significance ificant calls only	~			
,		Define a SNF	P distance for cl	usters
ing length:	negative - the default is 10		en 10 and 20 (b	
pruning length should be non-i				

Uploading data

REFERENCES

1. Clausen PTLC, Aarestrup FM, Lund O. Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinformatics 2018; 19:307.

Center for Genomic Epidemiology

Your job is being processed

Wait here to watch the progress of your job, or fill in the form below to get an email message upon completion.

Center for Genomic Epidemiology

Your job is being processed

Wait here to watch the progress of your job, or fill in the form below to get an email **henh@ssi.dk**

To get notified by email:

Notify me via email

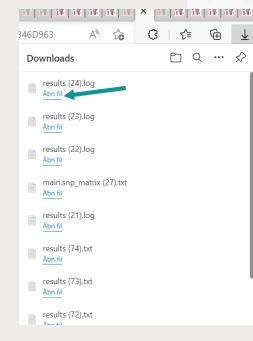
This page will update itself automatically.

Then wait for the result (if you start many different analysis, it is advised to make a log of what you have started and with what settings...and perhaps also the hypothesis).

MINTyper output

			MA004660_S12_L555_R	1_001.fastq.gz_aligr
•AMA004497_S24_L55	5_R1_001.fastq.gz_align	ment.fsa		
•AMA004554_S73_L55	5_R1_001.fastq.gz_align	ment.fsa		
AMA004656_S59_L55	5_R1_001.fastq.gz_align	ment.fsa		
AMA004627_S69_L55	5_R1_001.fastq.gz_align	ment.fsa		
1806				

Isolate	Valid positions	Pct. of reference
AMA004497_S24_L555_R1_001.fastq.gz	4435406	90.54
AMA004554_S73_L555_R1_001.fastq.gz	4427220	90.37
AMA004560_S27_L555_R1_001.fastq.gz	4465781	91.16
AMA004627_S69_L555_R1_001.fastq.gz	4412663	90.07
AMA004656_S59_L555_R1_001.fastq.gz	4442114	90.67
AMA004660_S12_L555_R1_001.fastq.gz	4327141	88.33
		Churchen diterests
Log Distance matrix Phylogentic tree Vcf files of	mutations Reference Sequence	Cluster.dbscan


Percentage of reference covered by all isolates: 84.71 (4149824 / 4899014)

MINTyper output

Below is the single isolate stats on covered and trusted positions with respect to the reference.

Isolate	Valid positions	Pct. of reference
AMA004497_S24_L555_R1_001.fastq.gz	4435406	90.54
AMA004554_S73_L555_R1_001.fastq.gz	4427220	90.37
AMA004560_S27_L555_R1_001.fastq.gz	4465781	91.16
AMA004627_S69_L555_R1_001.fastq.gz	4412663	90.07
AMA004656_S59_L555_R1_001.fastq.gz	4442114	90.67
AMA004660_S12_L555_R1_001.fastq.gz	4327141	88.33

	Log	Distance matrix	Phylogentic tree	Vcf files of mutations	Reference Sequence	Cluster.dbscan	
--	-----	-----------------	------------------	------------------------	--------------------	----------------	--

Percentage of reference covered by all isolates: 84.71 (4149824 / 4899014)

Below is the single isolate stats on covered and trusted positions with respect to the reference.

· · · francist	Isolate		Val	id positions	Pct. of ref	erence
utput	AMA004497	_S24_L555_R1_001.fast	q.gz	4435406		90.54
1 - C	AMA004554	_S73_L555_R1_001.fast	q.gz	4427220		90.37
	AMA004560	_S27_L555_R1_001.fast	q.gz	4465781		91.16
	AMA004627	_S69_L555_R1_001.fast	rq.gz	4412663		90.07
	AMA004656	_S59_L555_R1_001.fast	rq.gz	4442114		90.67
	AMA004660	_S12_L555_R1_001.fast	iq.gz	4327141		88.33
	Log Distance matrix	Phylogentic tree	Vcf files of mutations	Reference Sequence	Cluster.dbscan	
* 114 114 114 114 × 114 114	1246 1246 1246 1246					

MINTyper

output

Percentage of reference covered by all isolates: 84.71 (4149824 / 4899014)

Below is the single isolate stats on covered and trusted positions with respect to the reference.

Isolate	Valid positions	Pct. of reference
AMA004497_S24_L555_R1_001.fastq.gz	4435406	90.54
AMA004554_S73_L555_R1_001.fastq.gz	4427220	90.37
AMA004560_S27_L555_R1_001.fastq.gz	4465781	91.16
AMA004627_S69_L555_R1_001.fastq.gz	4412663	90.07
AMA004656_S59_L555_R1_001.fastq.gz	4442114	90.67
AMA004660_S12_L555_R1_001.fastq.gz	4327141	88.33

Log Distance matrix Phylogentic tree Vcf files of mutations Reference Sequence Cluster.dbscan

117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117

Running mintyper 1.1.0 with following input conditions:

Namespace(bc=0.7, cge=True, cluster_length=10, exe_path='/home/data1/services/MINTyper/MINTyper-1.0/scripts/bin/MINTyper/', /MINTyper/MINTyper-1.0/IO/1_25_9_2022_239_804_64033/uploads//AMA004627_S69_L555_R2_001.fastq.gz', '/home/data1/services/MINTyper/

Finding best template

Best template found was NZ_CP024672.1 Citrobacter freundii strain HM38 chromosome, complete genome

Template number was: 1901

Mapping reads to template

Paired-end illumina input not given but determined by the eval_pe function

/home/data1/services/MINTyper/MINTyper-1.0/scripts/bin/MINTyper/kma/kma -ipe /home/data1/services/MINTyper/MINTyper-1.0/IO/: /home/data1/services/MINTyper/MINTyper-1.0/scripts/bin/MINTyper/kma/kma -ipe /home/data1/services/MINTyper/MINTyper-1.0/IO/:

Alignment completed succesfully

4149824 / 4899014 bases included in distance matrix.

mintyper total runtime: 383.13289737701416 seconds

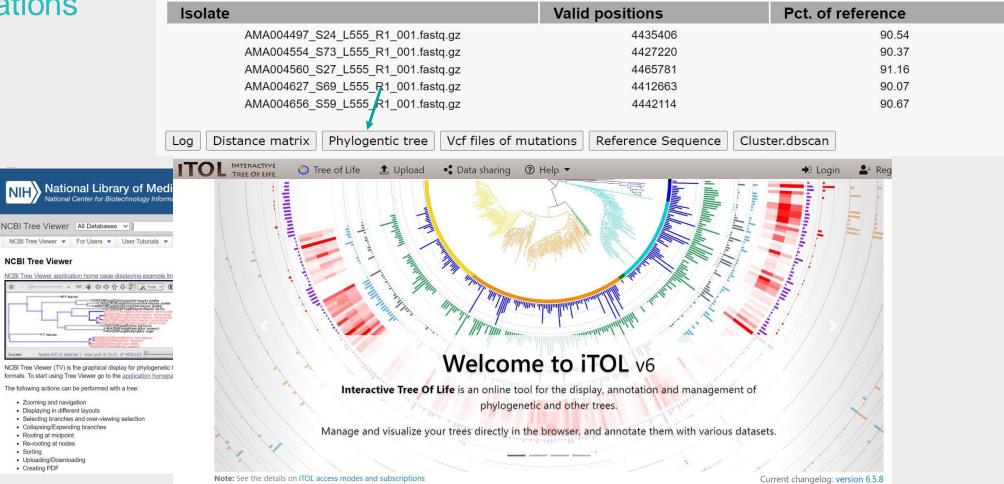
MINTyper output

Percentage of reference covered by all isolates: 84.71 (4149824 / 4899014)

Below is the single isolate stats on covered and trusted positions with respect to the reference.

Isolate		Valio	d positions	Pct. of ref	erence	
AMA004497_5	S24_L555_R1_001.fast	q.gz	4435406		90.54	•
AMA004554_5	673_L555_R1_001.fast	q.gz	4427220		90.37	S
AMA004560_5	S27_L555_R1_001.fast	q.gz	4465781		91.16	
AMA004627_5	69_L555_R1_001.fast	q.gz	4412663		90.07	8
AMA004656_5	659_L555_R1_001.fast	q.gz	4442114		90.67	•
AMA004660_5	612_L555_R1_001.fast	q.gz	4327141		88.33	ST91
Distance matrix	Phylogentic tree	Vcf files of mutations	Reference Sequence	Cluster.dbscan		

		1	2	3	4	2	6
	6						
1	AMA004497_S24_L555_R1_001.fastq.gz_alignment.fsa	0					
2	AMA004554_S73_L555_R1_001.fastq.gz_alignment.fsa	15	0				
	AMA004560_S27_L555_R1_001.fastq.gz_alignment.fsa	133	130	0			
	AMA004627_S69_L555_R1_001.fastq.gz_alignment.fsa	15	0	130	0	0	
	AMA004656_S59_L555_R1_001.fastq.gz_alignment.fsa	15	0	130	0	0	
6	AMA004660_S12_L555_R1_001.fastq.gz_alignment.fsa	46761	46758	46758	46758	46758	0


C

MINTyper output - visualizations

Percentage of reference covered by all isolates: 89.18 (4368832 / 4899014)

Below is the single isolate stats on covered and trusted positions with respect to the reference.

Percentage of reference covered by all isolates: 89.18 (4368832 / 4899014)

MINTyper output-	Below is the singl	e isolate stats or	covered and	trusted pos	sitions with re	espect to the ref	erence.
VCF data	Isolate			Valid posi	tions	Pct. of ref	ference
ver data	AMA00449	7_S24_L555_R1_001.fas	stq.gz		4435406		90.54
	AMA00455	4_S73_L555_R1_001.fas	stq.gz		4427220		90.37
	AMA00456	0_S27_L555_R1_001.fas	stq.gz		4465781		91.16
	AMA00462	7 S69 L555 R1 001.fas	stq.gz		4412663		90.07
	AMA00465	6_S59_L555_R1_001.fas	stq.gz		4442114		90.67
	Log Distance matri	x Phylogentic tree	Vcf files of muta	ations Refer	ence Sequence	Cluster.dbscan	
	AMA004497_S24_L555_R1_001.fastq.gz_alignment.vo	f - Notesblok			-		
	Filer Rediger Formater Vis Hjælp ##fileformat=VCFv4.2 ##KmaVersion=1.4.2 ##FILTER= <id=lowqual,description="low ##INFO=<id=dp,number=1,type=integer,de ##INFO=<id=ad,number=1,type=float,des ##INFO=<id=aaf,number=1,type=float,des ##INFO=<id=aaf,number=1,type=float,des ##INFO=<id=aaf,number=1,type=float,des ##INFO=<id=aaf,number=1,type=float,des ##FORMAT=<id=p,number=1,type=float,des ##FORMAT=<id=ft,number=1,type=float,des ##FORMAT=<id=ft,number=1,type=float,des ##FORMAT=<id=ft,number=1,type=float,des ##FORMAT=<id=ft,number=1,type=string,i #CHROM POS ID REF ALT NZ_CP024672.1 Citrobacter freundii str NZ_CP024672.1 Citrobacter freundii str</id=ft,number=1,type=string,i </id=ft,number=1,type=float,des </id=ft,number=1,type=float,des </id=ft,number=1,type=float,des </id=p,number=1,type=float,des </id=aaf,number=1,type=float,des </id=aaf,number=1,type=float,des </id=aaf,number=1,type=float,des </id=aaf,number=1,type=float,des </id=ad,number=1,type=float,des </id=dp,number=1,type=integer,de </id=lowqual,description="low 	scription="Total Depth"> scription="Allele Papth"> cription="Allele Papth"> cription="Allele Fraction"> cription="Revised Allele Fraction cription="Revised Allele Fraction cription="Count of all alternat cription="Count of all alternat cription="Filter"> QUAL FILTER INFO FORMAT ain HM38 chromosome, complete gen ain HM38	ining Spanning Deletions"> ive alleles: A,C,G,T,N,-"> bacte 1a.ATG ome 338 A 471 A ome 489 C ome 508 T ome 508 T ome 508 T ome 572 C ome 756 A ome 756 A ome 756 A ome 756 A ome 756 A ome 1548 T ome 1548 T ome 1549 T ome 1549 A ome 1569 A ome 1594 A ome 1612 A ome 1612 A ome 1743 G ome 1743 C ome 1743 C ome 1773 C	a 277 - G 367 - T 325 - T 314 - C 264 - T 273 - A 2000 - a 194 - C 2700 - T 338 - G 559 - t 361 - C 355 - G 529 - a 336 - C 355 - G 529 - a 336 - C 355 - G 529 - A 324 - T 361 - A 364 - T 385 - G 379 - T 385 - G 379 - T 391 - C 379 - T 392 -	DP=76; AD=65; AF=0.86; DP=51; AD=61; AF=1.00; DP=56; AD=55; AF=0.98; DP=44; AD=44; AF=0.09; DP=29; AD=43; AF=0.98; DP=49; AD=43; AF=0.98; DP=49; AD=43; AF=0.98; DP=49; AD=43; AF=0.88; DP=49; AD=43; AF=0.88; DP=49; AD=24; AF=0.87; DP=80; AD=59; AF=0.98; DP=97; AD=96; AF=0.87; DP=88; AD=88; AF=0.87; DP=88; AD=88; AF=0.87; DP=88; AD=88; AF=0.87; DP=88; AD=88; AF=0.87; DP=89; AD=75; AF=0.86; DP=89; AD=75; AF=0.86; DP=64; AD=64; AF=1.00; DP=64; AD=64; AF=1.00; DP=65; AD=65; AF=1.00; DP=65; AD=65; AF=1.00; DP=65; AD=65; AF=1.00; DP=65; AD=63; AF=0.99;	RAF=1.06 RAF=1.06 RAF=1.06 RAF=0.95 RAF=0.95 RAF=0.95 RAF=0.85 RAF=0.85 RAF=0.95 RAF=0.95 RAF=0.95 RAF=0.85 RAF=1.06 RAF=1.06 RAF=1.06 RAF=1.06 RAF=1.06 RAF=1.06 RAF=1.06	82
	NZ_CP024672.1 Citrobacter freundii str NZ_CP024672.1 Citrobacter freundii str	ain HM38 chromosome, complete gen	ome 2047 . A	C 270 .	DP=45;AD=45;AF=1.00;	;RAF=1.00	02

reference

Percentage of reference covered by all isolates: 89.18 (4368832 / 4899014)

Below is the single isolate stats on covered and trusted positions with respect to the reference. **MINTyper output**-

Isolate	Valid positions	Pct. of reference
AMA004497_S24_L555_R1_001.fastq.gz	4435406	90.54
AMA004554_S73_L555_R1_001.fastq.gz	4427220	90.37
AMA004560_S27_L555_R1_001.fastq.gz	4465781	91.16
AMA004627_S69_L555_R1_001.fastq.gz	4412663	90.07
AMA004656_S59_L555_R1_001.fastq.gz	4442114	90.67
Log Distance matrix Phylogentic tree Vcf files c	of mutations Reference Sequence C	Cluster.dbscan

template sequence (2) - Notesblok

Filer Rediger Formater Vis Hjælp

>NZ CP024672.1 Citrobacter freundii strain HM38 chromosome, complete genome ACTTCGGCGCCCAAAGTGCTGCACCGCGCACCATTACCCCTATTGCCCAGTTCCAGATCCCTGCTGATTAAAAATACCGGCAATCCACAAGCGCCTGGCACGTTGATTGGCGCCCAGCAGTGATGACGACGATTGCCGGTAAAAGGTATTTC GCGTAAATTCCTCTACGACACCAACGTGGGCGCAGGCTTGCCGGTAATTGAAAACCTGCAAAACCTGCTCAGCGCAGGTGATGAATTGCAGCGTTTCTCCCGGTATTCTTCCGGCTGCTGTCGTTTATTTTCGGCAAGCTGGATGAAGGCATC TACGCGCCTGTTGGCGATAATGGGCGAGCTGGAAGGGCGTATCTCCGGCAGTATTCATTACGATAATGTTGCCCCGTGCTTTTTGGGCGGCAGTTAATGATCGAAGAAAACGGCATTATCAGCCAGGCGCGCATTGATGAGGCG GTGCGCGTGGTGATCCTCTACCCGAACGGCAAGATCAGCCCATTACAGGAAAAACTGTTCTGTACGCTGGGCGGTAACATTGAAACTGTAGCGATTGATGGCGATTTGATGCCGAGCGCTGGTGAAACAGGCGTTTGATGACGAAGAGC AAGCGGTTCTCAATGATGTAGCGGCTCATCAGGCCGCGCGCTTTCTTGGCATAAAAGCTGATGACTTGAACTTGCCGTTTTTCTCGTCTAGGAAGACTGGTTTAATCAGCTCGGCATTGAGCTTTTTCGGCTTCACGGATTTAAAAATACTCA CCAAACTGGCGAATGTAGCGGAACTGCACGAACCCTGTACGCCAGGTGAACCAACATCCTGCGCCAAGCAGGAGGTAGATCATCACCGACCCCCAGAGTATTTCATTAATAAATGAGAAAAAATCAGGCATTAACATCCCTCTTGTTGATGATGCC GGATTTATTGTCGACCGGGTCGGCGCCAGCAAAACCTTTATTGTCGGCAGCCTGCTGCTGGCCTGCTGGCCTGGTTCGAGCTGGTTTTTCTATCACCGGCAGCCATCCTCAGCACTTGTTCCTGTTATACGGGCTGGGATTATGCGTGGCATTGGCGTGG CAAAATCATCATCATTGATTGATGGTGAAATAGTTTCCCCAAATAACGATCACTGTCTTCGGGGCGCGGCATAATAATCAGGGGGAGGGGCACTGTCTATGATCTAACGAAGGGAAAACGAATTATTTTCCCTGTGATGGGCATCACGCTTGTGCC TTGATGGAGGAAGGCACGTTCAGACTCTGGCTGGACATGCGGGCAGCTTTGAAATAAACCGATGCACCACTGAGCTGTAAATCACCATGATCGGCCGTAAGTTGAATGCGTTTCACCACGCGGCAAACGGGAAGTTTCAGCGTCAGATCGTCG CGCGCGGTATGCCGCAGATCGAAGTTACTTTTGACATCGATGCCGACGGTATCCTGCACGTTTCCGCGAAAGAACAAAAACAGCGGTAAAGAGCAGAAGATCACCATCAAGGCTTCTTCTGGTCTGAACGAAGAAGAAGAAGAAATTCAGAAAGATGGTTCC GTATTCCGACTCTGGAAGAGTGTGACGTCTGCCACGGTAGCGGCGCGCGAAGGCGGGCACTCAGCCGCAGACCTGTCCACGGTTCTGGTCAGGTACAGATGCGTCAGGGCTTTTTTGCCGTACAGCAGACCTGTCCACACTGTCAGGC TGATTATTATGGCTGATGATTTGGGCTATGGCGATCTCGCGACTTATGGCCATCAAATCGTCAAAACGCCTAATATCGACAAGCTGGCACAGGAAGGGGTGAAATTTACCGACTACTATGCGCCCGCGCCGCTGTGCTCCTTCTCGTGCGGC CATGATGAATTTTAAACTGCCAACAGATCGTACCTACGATGGGCAGTCTCTGGTTCCATTACTTGAACAGAAAACGTTAGCACGTCAGAAAACCACTCATCTTTGGCATTGATATGCCGTTCCAGGATGATCCTACTGACGACGGCGATCGT

Let's take a break ③

Scenario

Table 1 Metadata for the 12 carbapenemase producing *E. coli* isolates

Species	Date	Region of isolation	Travel	MLST	Sequence	Carba genotype (PCR)
E. coli	2015	Copenhagen	Pakistan	ST410	Ec001	OXA-48-like
E. coli	2015	Copenhagen	Thailand	ST410	Ec002	OXA-48-like
E. coli	2015	Jutland - M	India	ST410	Ec003	NDM
E. coli	2015	Copenhagen	Lebanon	ST410	Ec004	OXA-48-like
E. coli	2016	Zealand	No	ST410	Ec005	NDM, OXA-48-like
E. coli	2016	Zealand	No	ST410	Ec006	NDM, OXA-48-like
E. coli	2017	Copenhagen	Pakistan	ST410	Ec007	OXA-48-like
E. coli	2018	Jutland - N	Thailand	ST410	Ec008	NDM
E. coli	2018	Zealand	No	ST410	Ec009	NDM, OXA-48-like
E. coli	2018	Zealand	No	ST410	Ec010	NDM, OXA-48-like
E. coli	2018	Zealand	No	ST410	Ec011	NDM
E. coli	2018	Zealand	No	ST410	Ec012	OXA-48-like

Scenario:

- A recent rise in cases of carbapenemase producing *E. coli* in several regional hospitals indicate one or more ongoing outbreaks
- Suggested that the NRL could give assistance by performing outbreak investigation by WGS.
- Patients include both domestic and travelrelated cases and a batch of samples has already been sequenced using Illumina sequencing (NextSeq).
- From these sequences, subtyping by MLST was performed and a selection (12 *E. coli* isolates) of the most predominant MLST (ST410) isolates has been transported to your laboratory for further analysis.
- Your laboratory has just finalized setting up MinION (Oxford Nanopore; ONT) sequencing, and you wish to use this occasion to work with both types of ₈₅ sequences.

Thank you

This programme is being funded by the UK Department of Health and Social Care. The views expressed do not necessarily reflect the UK Government's official policies.

