Whole Genome Sequencing and Bioinformatics SeqAfrica Training

Marco van Zwetselaar Niamh Lacy-Roberts Day 2

ONT QC

QC for ONT data

• Before beginning any post sequencing analyses, is an important to perform QC to understand if your data meets certain requirements and matches your expectations from the sequencing run.

- © 2008 2025 Oxford Nanopore Technologies plc.
- Nanopore sequencing, can suffer from errors (basecalling errors, contamination, lowquality reads etc).
- We can use QC to identify and mitigate errors
- While live basecalling, **MinKNOW** provides real-time feedback, such as read quality, read length and N50. This information is presented in an **interactive run report** and can be exported during and after the sequencing run.
- You can run EPI2ME workflows (e.g bacterial genomes) on the cloud or locally on your computer. The Fleming Fund | SeqAfrica

Why do errors occur?

- The pattern obtained from the nanopore needs to be interpreted.
 - Interpretation is based on machine learning models.
 - Signal varies depending on neighboring nucleotides, condition of pore (contamination, bubbles) and DNA speed variation (temperature issues).
- DNA string may slip in the pore during translocation.
- Short reads (<500 bp) tend to have worse quality and are often noise.
 - Longer reads provide better coverage but amplify homopolymer and repetitive regions issues.
- Stretches of homopolymers are difficult to call.
 - Repeated nucleotides (e.g., "TTTTT") generate similar current disruptions.
 - Hard to distinguish between exact base counts (leading to insertions or deletions).

• Newer chemistry and updated basecalling models improves significantly on accuracy.

Bubbles in the flowcell

Examples of errors

Substitution Errors

- Incorrectly identifying one base as another (e.g., $A \rightarrow G$).
 - Signal noise from current disruptions as DNA passes through the nanopore.
 - Inaccurate basecalling algorithms.

Affects gene sequences, especially for detecting SNPs and AMR mutations.

Insertion Errors

- Extra bases are called that do not exist in the actual sequence.
 - Signal misinterpretation due to homopolymer regions.
 - "AAAA" may be misread as "AAAAA."

Deletion Errors

- Bases in the sequence are missed (e.g., a "C" is skipped).
 - Weak signal-to-noise ratio during strand passage.
 - Homopolymer stretches cause difficulty for nanopores.

Assembly errors, especially in repetitive or homopolymeric regions.

Loss of genetic information; problematic for gene annotation and AMR detection.

Errors in downstream analysis

Downstream Analysis	Impact of Errors
Genome Assembly	Fragmented assemblies, reduced N50, inaccurate contigs.
Variant Calling	Misidentification of SNPs, insertions, or deletions.
AMR Detection	False positives or false negatives in AMR gene predictions.
Phylogenetics	Errors propagate into phylogenetic trees, misleading clusters.

ONT sequencing output

Fastq files containing 4000 reads (default)

@SRR1770413.1 1/1
CACCCGGCATCAGGTGCGGTACTTTTGCGCCTCCCAGCCGGACCGGCCCTGCGGCGTAATA
CCAGCCTCACATCCCTCGCTGCCTGCGTATCCAGCTCACTCTCCCTGGTTGCCGCCTACAT
GCTCCCTCCCGCTGTTCCACCCCTTTGCACCCCCCCTCTGCCCCTCCTGCTCGCCAGCCCC
.

Also get POD5 files, QC report...

Read quality – Q scores

- The Phred quality score is a logarithmic score based on the probability that the base call (nucleotide) is incorrect
- Q10 = 1/10 risk of incorrect base
- Q20 = 1/100 risk of incorrect base
- Q30 = 1/1000 risk of incorrect base
- This means that in a sequence of 100 bp at Q20, there will most likely be at least 1 error.

$$Q = -10 \bullet \log_0(P)$$

or in terms of probability
$$P = 10^{-\frac{Q}{10}}$$

Where
P = probability of incorrect base call
Q = Phred quality score

Phred quality score	Probability of incorrect base call	Probability of being correct
10	0.1	90%
20	0.01	99%
30	0.001	99.9%

Read quality, read length and N50

- bp = base pair
- kb (= kbp) = kilo-base-pair = 1,000 bp
- Mb (= Mbp) = mega–base-pair = 1,000,000 bp
- Gb (= Gbp) = giga-base-pair = 1,000,000,000 bp
- Nanopore technology routinely generates sequencing reads that are tens of kilobases in length
- The longest DNA fragment sequenced to date using nanopore technology is 4.2 Mb, which was achieved using the <u>Ultra-Long DNA Sequencing Kit</u>.
- N50 the length at which half of the nucleotides in the fastq/assembly belong in reads/contigs of this length or longer.
- Default Q score is at least 10, this can specified when setrting up you sequencing.

MinKNOW Interface

Picture belongs to oxford nanopore (https://store.nanoporetech.com/eu/rapid-barcoding-kit-1.html) © 2008 - 2025 Oxford Nanopore Technologies plc.

Homepage overview

The MinKNOW Homepage enables the user to navigate to:

- a. Start homepage
- b. Sequencing Overview of connected flow cells
- c. Recent and current Experiments
- d. System Messages
- e. Host Settings
- f. Connection Manager to connect with other available devices
- g. Start Sequencing experiment
- h. Post-run Analysis
- i. Flow Cell Check
- j. Hardware Check
- k. More includes option to generate .mmi from .fasta file or to import a sample sheet
- I. Guest/initials to logout

The Fleming Fund | SeqAfrica

Flow Cell Check

← MC-111274 REMOTE MC-1111274	SD.		
 Start 	MC-111274_0 FAN59722	MN31043	FAO39517
E Sequencing overview			×
✓ Experiments		(O)	
📟 System messages			
✿ Host settings >	Flow cell not checked		
		Ready for seq	uencing
		1490 pores	found
L Connection manager			

 $Picture\ belongs\ to\ oxford\ nanopore\ (https://store.nanoporetech.com/eu/rapid-barcoding-kit-1.html)$

© 2008 - 2025 Oxford Nanopore Technologies plc.

Flow cell health

Picture belongs to oxford nanopore (https://store.nanoporetech.com/eu/rapid-barcoding-kit-1.html)

- During a sequencing experiment, the Sequencing Overview page shows a flow cell icon with coloured bars.
- The bars represent the combined health of all pores in a flow cell

Experiment Summary Information

€≡	gxb03153									🚨 Guest
0	Start		4_3_basecalling_test							
	Sequencing overview		11 Pause	Stop ~ Start	pore scan	Export run report				~ Experiment group
~	Experiments	Position -	Flow cell ID -	Sample ID —	Health	Run time —	Run state —	Reads -	Bases —	Basecalled % -
-	System messages	×1	FAQ16580	fast_basecalling		20 m / 72 h	Active	27.74 k	125.04 Mb basecalled 122.23 Mb estimated	100%
٠	Host settings	X2	FAQ13638	fast_basecalling	-	20 m / 72 h	Active	30.07 k	141.35 Mb basecalled 136.9 Mb estimated	100%
		X1	FAQ16580	no_sample	-	1 h 1 m	Complete	89.91 k	413.74 Mb basecalled 399.62 Mb estimated	100%
		X2	FAQ13638	no_sample	-	1 h 1 m	Complete	105.7 k	510.42 Mb basecalled 487.38 Mb estimated	100%
										Scroll right >
		Positi	on X1							
		Expe	riment group	4_3_basecalling_tes	t		Total run time	20m 11s		
		Samp	ole ID cell product code	fast_basecalling			Temperature	34 °C		
		Kit II	D	SQK-LSK109				-170 mV		
		Current output directory Basecall model		/ /data//4_3_basecalling_test/fast_basecalling/202104 Fast basecalling 7		asecalling/202104	Read count	27.74 k		
		Minimum qscore				Estimated bases	122.23 Mb			
							Basecalled bases	125.04 Mb		
۵	Application settings									
*	Connection manager									

- Minknow will basecall and demultiplex live
- Real time information on flow cell health and sequencing

© 2008 - 2025 Oxford Nanopore Technologies plc.

Pore Scan

© 2008 - 2025 Oxford Nanopore Technologies plc. Picture belongs to oxford nanopore (https://store.nanoporetech.com/eu/rapid-barcoding-kit-1.html)

Pore Occupancy

Picture belongs to oxford nanopore (https://store.nanoporetech.com/eu/rapid-barcoding-kit-1.html)

Good library

Picture belongs to oxford nanopore (https://store.nanoporetech.com/eu/rapid-barcoding-kit-1.html)

Channel Blocking

Picture belongs to oxford nanopore (https://store.nanoporetech.com/eu/rapid-barcoding-kit-1.html)

© 2008 - 2025 Oxford Nanopore Technologies plc.

Osmotic Imbalance

Osmotic Imbalance – channel scan

- Show less

21

Low Pore Occupancy

 $\ensuremath{\mathbb{C}}$ 2008 - 2025 Oxford Nanopore Technologies plc.

Use ONT website and community to troubleshoot

	PRODUCTS APPLICATIONS STORE RES	OURCES SUPPORT ABOUT Q Q 🛱 C	Contact Niamh Lacy-Roberts 👻		DUCTS APPLICATIONS STORE RESOURCES SUPPORT ABOUT Q	습 🕁 Contact Niamh Lacy-Roberts 🗸
K⊅ ② Dashboard ≫ Getting started	Welcome to the Nanopore	Community		Resources: Docu		
Image: Constraint of the second s	Knowledge	Step by step guides		HOME / Documentation	ecimitique, or product	
W ∪ccumentation ∰ Highlights > ☆ Updates	to restricted content within the Knowledge section of the community.	instructions for running a control experiment on a MinION. Choose a guide		Home Plan Methodology best practice	Plan This section will help you plan your nanopore sequencing experiment end-to-end.	What are the benefits of community membership? Posts
	Become a full member Join the community as a full member to access all areas and interact with other nanopore sequencers.	How to join Join an existing account You can become a full member of the community by joining an existing account.		Prepare All Sample storage > Extraction protocols DNA/RNA Handling > Library prep protocols		Interact with thousands of other nanopore sequencers from around the globe. Private Channels Discuss specific topics and technology applications.
 (8) Notifications (8) Profile 	Posts Interact with thousands of other nanopore sequencers from around the globe. Support	Or Or		SARS-CoV-2 Automation	Adaptive sampling Last updated 16/10/2024 View all best practice methodologies Prepare	Product and technology updates Stay up to date with the latest Oxford Nanor LIVE SUPPORT

© 2008 - 2025 Oxford Nanopore Technologies plc.

Let's look at some QC reports

- <u>Report 1</u>
- <u>Report 2</u>
- <u>Report 3</u>

Trimming and filtering

- We can employ bioinformatic tools to trim and filter our sequences:
 - **Trimming** focuses on removing unwanted sequences such as adapters, barcodes, or low-quality bases from the ends of reads.
 - **Filtering** focuses on removing entire reads based on predefined criteria, such as low Q-scores, overly short reads, or other contaminants.
- Some examples of command-line tools:
 - Nanoflit
 - Flitlong
 - Porechop (no longer maintained)
 - Fastplong
 - SeqKit
 - NanoPack

The Fleming Fund | SeqAfrica

Flitlong

- · Filters reads based on length and quality
 - Can prioritize specific reads.
 - Can downsample to desired coverage.
- Here is an example of running it on the command line:

filtlong --min_length 1000 --keep_percent 95 input.fastq.gz | gzip > long.fastq.gz

- This will remove any reads shorter than 1 kbp and also exclude the worst 5% of reads.
- Filtlong considers shorter reads 'bad' and longer reads 'good' so more aggressive filtering will leave you with few reads on the short end of the spectrum. For most of the genome this is probably a good thing, but it can be disastrous for small plasmids.
- For example, if you have a big read set that you've aggressively filtered with Filtlong, you might be left with no reads smaller than 10 kbp. If that genome has a small plasmid 4 kbp in size, it will now be gone from the read set!

Visualization and QC Reporting Tools for ONT Data

- After trimming and filtering ONT sequencing data, it is essential to visualize and report the quality of the cleaned reads to ensure the data is suitable for downstream analyses like genome assembly or AMR detection.
- Some examples of command line tools:
 - NanoStat (no longer maintained), superseded by CRAMINO
 - NanoPlot
 - pycoQC (no longer maintained)
 - nanoQC
 - nanoq

Nanoplot

- Generates and plots metrics from FASTQ files
- Outputs statistical summery, plots and html summary file

Nanoplot

NanoPlot

Summary statistics: unfiltered vs filtered

General s	summary:	General summary:
Mean read	d length: 6, 891.0	Mean read length: 8,677.3
Mean read	d quality: 10.5	Mean read quality: 12.1
Median re	ead length: 5,400.0	Median read length: 7,124.0
Median re	ead quality: 11.0	Median read quality: 12.0
Number of	f reads: 4,100.0	Number of reads: 1,154.0
Read leng	gth N50: 10,208.0	Read ength N50: 11, 623.0
Total bas	ses: 28, 253, 135. 0	Total bases: 10,013,547.0
Number, p	percentage and megabases of reads above quality cutoffs	Number, percentage and megabases of reads above quality cutoffs
>Q5:	4010 (97.8%) 27.9Mb	>Q5: 1154 (100.0%) 10.0Mb
>Q7:	3834 (93.5%) 27.1Mb	>Q7: 1154 (100.0%) 10.0Mb
>Q10:	3014 (73.5%) 21.9Mb	>Q10: 1154 (100.0%) 10.0Mb
>Q1 2:	640 (15.6%) 5.0Mb	>Q12: 565 (49.0%) 4.9Mb
>Q15: 0	0 (0.0%) 0.0Mb	>Q15: 0 (0.0%) 0.0Mb
Top 5 hig	ghest mean basecall quality scores and their read lengths	Top 5 highest mean basecall quality scores and their read length
1: 1	13.9 (403)	1: 13.6 (17389)
2: 1	13.6 (17389)	2: 13.6 (13346)
3: 1	13.6 (13346)	3: 13.4 (5936)
4: 1	13.6 (2028)	4: 13.3 (6092)
5: 1	13.5 (1068)	5: 13.3 (5501)
Top 5 lor	ngest reads and their mean basecall guality score	Top 5 longest reads and their mean basecall quality score
1: 3	21834 (9.3)	1: 21795 (11.9)
2: :	21795 (11.9)	2: 21794 (11.9)
3:	21794 (11.9)	3: 21773 (12.5)
4:	21773 (12.5)	4: 21674 (11.9)
5:	21 674 (11.9)	5: 21 591 (12.2)
	Unfiltered data	Filtered data

https://github.com/wdecoster/NanoPlot

30

Let's take a break 😳

Overview of assembly approaches

From fastq to fasta

@SRR1928200.1 HWI-ST1106:418:D1H56ACXX:2:1207:10978:124033/1
TGCCGAGTGATATCGCTGACGTCATCCTTGAGGGTGAAGTTCAGGTCGTCGAGCAACTCGGCAACGAAACTCAAATCCATATCCAGATCCCTTCCATTCG

@@CFFDFBFFHHHJJJJIJIJIGGIIJJJGIIHIFBGHIHHHJJIIFGHIGJJJHHHHFFFCCDDDDDDDDCCCC;:@CDDDDDDDDDDDCDDDC>CDD>

Types of Assembly Tools

User-friendly platforms

- Platforms designed with graphical interfaces (accessible by a web browser) with pipelines already developed, making bioinformatics accessible to nonexperts
- Ideal for quick analyses on small datasets or limited computational resources

Command Line Tools

• Tools that are **executed** using text-based

commands in a terminal

- Require installation and configuration on a local computer or server
- Recommended for large-scale projects, up-to-date tools, or unique workflows

The choice between both tools depends on expertise, project scale, and the need for customization (flexibility)

What depth of coverage is best for long-read-only (ONT) genome assembly?

100× <u>ONT</u> coverage is the ideal for long-read-only assemblies \rightarrow Assembly tool dependent (some

tools tools show improved accuracy with higher read depth)

What depth of coverage is best for hybrid (Illumina and ONT) genome assembly?

<u>ONT</u> read depth of **30×** is sufficient to achieve high-quality genome assemblies, provided that at least

50× Illumina data is also available → Assembly tool dependent

Fig. Comparison of single nucleotide variants (SNVs) and small insertions/deletions < 60 bases

(INDELs) in (A) hybrid assembly methods at three different average read depth of coverage to the

The Fleming Fund SegAfrica reference genomes. Lines in the center of boxplots represent the mean

all replicons

How close are we to using ONT data to produce Illumina-quality assemblies?

Polishing long-read-only assemblies with Illumina short-read data significantly reduces the number of single nucleotide variants (SNVs) and small insertions/deletions (INDELs) \rightarrow Illumina short-read data is still valuable for high accuracy genomes

Assembler	Depth of coverage	Hybrid: SNVs per 100 kB	Long-read: SNVs per 100 kB	Hybrid: INDELs per 100 kB	Long-read: INDELs per 100 kB
Flye	10 ×	1.75	27.9	1.16	36.7
Flye	30 imes	0.21	1.74	0.16	1.23
Flye	50 imes	0.09	1.19	0.09	0.72
Flye	100 imes	0.09	1.11	0.08	0.51
Raven	10 imes	10.7	32.8	4.28	25.6
Raven	30 imes	0.22	2.03	0.33	2.08
Raven	50 imes	0.59	1.91	0.40	1.62
Raven	100 imes	0.50	1.16	0.21	0.99

Table 2. Mean count of single nucleotide variants (SNVs) and small (<60 bp) insertions/deletions (INDELs) per 100 kb in hybrid</th>and long-read-only assemblies from the RBKv14 dataset.

A note on Polishing

- Long-read polishing is the process of correcting errors in long-read sequences to improve assembly accuracy.
- Addresses issues like indels, mismatches, and sequencing artifacts.
- Can significantly improve sequence accuracy, and since long reads can span most repeats, long-read polishing can make repeats just as accurate as non-repetitive sequences.

Types of Polishing:

- Self-Polishing:
 - Uses the long reads themselves to correct errors.
 - Tools: Racon, Medaka.
- Short-Read Polishing:
 - Incorporates accurate short reads (e.g., Illumina) for error correction.
 - Tools: Pilon, POLCA.

Assembly Tools for Short-read Data

Tools like SPAdes and SKESA are leaders for

short-read **<u>bacterial</u>** genome assembly

Assembly Tools

- SPAdes (Unicycler and Shovill are tools based on SPAdes)
- SKESA
- Velvet
- Abyss
- SOAPdenovo2
- MEGAHIT

Used sometimes after assembly to correct base-level errors and improve accuracy

Polishing Tools

- NextPolish (supports short- and long-read data)
- Polypolish
- Pypolca (Python-based implementation of POLCA)
- Pilon
- HyPo

Assembly Tools for Short-read Data

Optimization of assembly tools – even the same tool (e.g., SPAdes with --careful and k-mer tuning) – can significantly **improve the accuracy of the assembly** and consequently of all downstream analysis

Overall, **SKESA** (inclusion of --allow_snps) and **SPAdes careful custom-k** (-k 33,55,77,99,121) performed the best concerning both accuracy, precision, and sensitivity

Fig. Performance metrics for the three methods. Accuracy, precision, and sensitivity of *Staphylococcus spa* type determination are shown for SPAdes careful, SPAdes careful custom-k, and SKESA.

The Fieming Fund | SeqAfrica

Assembly Tools for Long-read Data

Long-read data **assemblers**, are frequently used with **polishing tools**,

and finishing utilities (e.g.,

Circlator - "circularize" bacterial genomes from draft assemblies)

Assembly Tools

- Flye (popular for bacteria)
- Canu
- Dragonflye
- Raven
- SMARTdenovo
- Miniasm
- Trycycler (consensus tool)

Polishing Tools

- Medaka (uses a Machine Learning model trained on ONT data)
- NextPolish
- Racon (consensus polishing)
- FMLRC2 (long-read error correction

using high-quality short-read data)

The Fleming Fund | S

Polishing Tools for Long-read Data

Benchmarking short and long read polishing tools for nanopore assemblies: achieving near-perfect genomes for outbreak isolates

Tu Luan^{1†}, Seth Commichaux^{2*†}, Maria Hoffmann³, Victor Jayeola³, Jae Hee Jang³, Mihai Pop¹, Hugh Rand³ and Yan Luo³

Among the tools evaluated, **Medaka** was identified as a **more accurate and efficient** long-read polisher compared to **Racon**

Be **<u>cautious</u>** of any major changes made by **<u>polishers</u>**, as

their goal is to correct large-scale errors, but some tools

may **<u>introduce new errors</u>** while fixing others

Assembly Tools for Long-read Data

Ryan Wick's bioinformatics blog A	bout
ONT-only accuracy with R10.4.1	NC
Assembly tools used in 5 differen	nt
bacterial species were ranked from bes	st
to worst: Trycycler (more tim	ie
consuming), Canu and Flye	

This table shows the error count (top) and qscore (bottom) for each assembly:					
Genome	Flye	Canu	Trycycler	Trycycler +Medaka	Main cause of errors
Salmonella enterica	52 Q49.7	35 Q51.4	13 Q55.7	9 Q57.3	homopolymers
Vibrio parahaemolyticus	149 Q45.4	91 Q47.5	52 Q50.0	81 Q48.0	unknown methylation?
Escherichia coli	332 Q42.0	223 Q43.7	171 Q44.8	171 Q44.8	M1.EcoMI methylation
Campylobacter jejuni	1004 Q32.5	1113 Q32.0	508 Q35.4	578 Q34.9	CtsM methylation
Listeria monocytogenes	12 Q53.9	7 Q56.2	0 Q∞	0 Q∞	n/a

<u>Flye</u> frequently duplicated small plasmids (between 4.1 and 9.3 kb) or was missing small plasmid

replicons altogether (between 1.4 and 5.2 kb)

Lerminiaux et al. (2024). Can J Micr;70(5):178-189; https://rrwick.github.io/2023/05/05/ont-only-accuracy-with-r10.4.1.html The Fleming Fund | SeqAfrica

Let's take a break 😳

Assembly theory

NGS data processing

TTTTTTT

- Raw reads are produced by the sequencing platform
- Trimming poor sequences are removed from the raw reads, leaving high confidence trimmed reads
- QC visualize metrics
- Assembly we can then apply two standard approaches:
 - Mapping to reference
 - De novo assembly

Mapping to reference

- Reads are aligned to a reference genome using alignment tools such as
 - Burris Wheelers Aligner (short reads)
 <u>GitHub Ih3/bwa: Burrow-Wheeler</u>
 <u>Aligner for short-read alignment (see</u>
 <u>minimap2 for long-read alignment</u>).
 - Minimap2 (long reads) <u>GitHub -</u>
 <u>Ih3/minimap2: A versatile pairwise</u>
 <u>aligner for genomic and spliced</u>
 <u>nucleotide sequences</u>.
- Depend on availability of high quality "closely" related strain.

Created with BioRender.com

De novo assembly

- Reference independent assembly of reads, for an "Unbiased" reconstruction of the genome.
- For short read technologies, repeated segments are an issue.
- For Long-read technologies these issues are less pronounced.
 - You will typically have reads that are longer than the longest repeat in the genome.
 - E.g. if your genome's longest repeat is 6 kbp and your reads have an N50 length of 10 kbp, assembly should proceed well. But keep in mind that some bacterial genomes do have very long repeats (e.g. 100 kbp) and complete assembly in such cases will require ultra-long reads.

De novo assembly

- Many programs can do assembly, they differentiate by how precisely they can construct the assembly, how fast and how computationally heavy their workload
 - o SPAdes
 - 0 Flye
 - o Canu
 - O Raven
 - 0 Trycycler
 - 0 Unicycler
- The assembly should not contain unknown bases (N), e.g. we usually work with the contigs, and not the scaffolds

Flye

- <u>Flye</u> is an overall strong performer. Its main downside is that you'll need a bit more computational resources than you would for other assemblers. 32 GB of RAM and 1 hour should be sufficient for most read sets.
- You can run Flye like this

flye -o flye_assembly --plasmids --threads 16 --nano-raw long.fastq.gz

- Flye's --plasmids option enables a nice feature which tries to recover small plasmids in the genome.
- However, it has a nasty habit of sometimes doubling small plasmids in a single contig. E.g. if your genome has a 4 kbp plasmid, Flye might create an 8 kbp contig with two whole copies of the plasmid sequence. Something to keep an eye out for!

Nanopore Assemblers and De Bruijn Graphs

• SPAdes:

- Constructs de novo assemblies using De Bruijn graphs.
- De Bruijn graphs are built from K-mers, which are overlapping subsequences of length K derived from the input reads.

• Steps in De Bruijn Graph Assembly:

- Split sequences into overlapping K-mers.
- Connect identical K-mers across all reads.
- Traverse the graph, assembling the genome by visiting each edge only once.

• Flye:

- Does not use traditional De Bruijn graphs.
- Instead, employs a repeat graph, a conceptually similar structure designed to resolve repeats in high-error long reads.
- Optimized for **long-read nanopore data**, producing highly contiguous assemblies even with repetitive regions.

• Worked example of a 4-mer:

<u>Reads</u>	Resulting 4-mers
ATGCGTGAC	

- Worked example of a 4-mer:
 - First 4-mer consists of the 4 first nucleotides.

- Worked example of a 4-mer:
 - First 4-mer consists of the 4 first nucleotides.
 - Slide 1 nucleotide down the sequence.

<u>Reads</u>	Resulting 4-mers
ATGCGTGAC	 ATGC
	TGCG

- Worked example of a 4-mer:
 - First 4-mer consists of the 4 first nucleotides.
 - Slide 1 nucleotide down the sequence.
 - Repeat for rest of sequence.

- Worked example of a 4-mer:
 - First 4-mer consists of the 4 first nucleotides.
 - Slide 1 nucleotide down the sequence.
 - Repeat for rest of sequence.

- Example:
 - Reads of 5 bp is split into Kmers of length 3 (3-mers)

• De Brujn graph constructed with 3-mers as edges

- Example:
 - Reads of 5 bp is split into Kmers of length 3 (3-mers)
 - De Brujn graph constructed with 3-mers as edges
 - Process repeated for new read

<u>Reads</u>	Resulting 3-mers
ATGCG	TAG
AGGCG	AGG
TATGCG	GGC
TAGGCG	GCG

<u>Reads</u>	<u>Resulting 3-mers</u>
ATGCG	TAG
AGGCG	AGG
TATGCG	GGC
TAGGCG	GCG

<u>Reads</u>	Resulting 3-mers
ATGCG	TAG
AGGCG	AGG
TATGCG	GGC
TAGGCG	GCG

<u>Reads</u>	Resulting 3-mers
ATGCG	TAG
AGGCG	AGG
TATGCG	GGC
TAGGCG	GCG

<u>Reads</u>	<u>Resulting 3-mers</u>
ATGCG	TAG
AGGCG	AGG
TATGCG	GGC
TAGGCG	GCG

<u>Reads</u>	<u>Resulting 3-mers</u>
ATGCG	TAG
AGGCG	AGG
TATGCG	GGC
TAGGCG	GCG

<u>Reads</u>	<u>Resulting 3-mers</u>
ATGCG	TAG
AGGCG	AGG
TATGCG	GGC
TAGGCG	GCG

<u>Reads</u>	<u>Resulting 3-mers</u>
ATGCG	TAG
AGGCG	AGG
TATGCG	GGC
TAGGCG	GCG

<u>Reads</u>	<u>Resulting 3-mers</u>
ATGCG	TAG
AGGCG	AGG
TATGCG	GGC
TAGGCG	GCG

<u>Reads</u>	<u>Resulting 3-mers</u>
ATGCG	TAG
AGGCG	AGG
TATGCG	GGC
TAGGCG	GCG

Overlap-Layout-Consensus (OLC) vs De Bruijn Graphs

(b) De Bruijn graph assembly

(i) Make kmers

	Read1:	TTCTAAGT	Read2:	CGATTCTA	Read3:	GATTGTAA
	Kmers:	TTC	Kmers:	CGA	Kmers:	GAT
		TCT		GAT		ATT
		CTA		ATT		TTG
		TAA		TTC		TGT
		AAG		TCT		GTA
		AGT		CTA		TAA

(ii) Build graph

(iii) Walk graph and output contigs

Let's take a break 😳

Hybrid Assembly

Hybrid Assembly Approaches

Used when researchers want to leverage the strengths of both short-read and long-read sequencing

data to produce a more complete and accurate genome assembly

Assembly Tools for Hybrid Data

Most long-read assembly tools (e.g., Flye, Raven) can be integrated into hybrid assembly workflows,

where initial assemblies are polished with long-read tools followed by further polishing with short-

The Fleming

read data

Assembly Tools

- Unicycler
- Hybracter
- Trycycler (consensus tool)
- Dragonflye
- HybridSPAdes
- MaSuRCA

Do we still need Illumina sequencing data? Evaluating Oxford Nanopore Technologies R10.4.1 flow cells and the Rapid v14 library prep kit for Gram negative bacteria whole genome assemblies

Nicole Lerminiaux ⁰, Ken Fakharuddin ⁰, Michael R. Mulvey, and Laura Mataseje

When compared to Flye and Raven → Unicycler produced the most accurate assemblies, closely resembling reference genomes, with fewer issues such as missing or duplicated plasmids

Wick et al. (2017). PLoS Comput Biol. 13(6):e1005595; Bouras et al. (2024). Microb Genom. 10(5):001244; Wick et al. (2021). Genome Biol. 22(1):266

Fig. Overview of the Trycycler long-read assembly pipeline. Before Trycycler is run, the user must generate multiple complete assemblies of the same genome,e.g., by assemblingdifferent subsets of the original long-read set. Trycycler then clusters contigs from different assemblies and produces a consensus contig for each cluster. These consensus contigs can

then be polished (e.g., with Medaka) and combined into a final high-quality long-read-only assembly

The Fleming Fund | SeqAfrica

For bacterial genomes, a **Trycycler+Medaka(optional)+Pilon** approach can deliver assemblies which are very close to this goal: approximately one error per 2 Mbp, equivalent to two errors in an *E. coli* genome

Fig. Results for the real-read tests. For six genomes, we produced two independent hybrid read sets from the same DNA extraction. For each genome and each assembly approach, we aligned the two independently assembled chromosomes to each other to determine the mean assembly identity **(A)** and the worst identity in a 100-bp sliding window **(B)**.

The Fleming Fund | SeqAfrica

Aims to provide a comprehensive tutorial based on Trycycler for achieving <u>error-free bacterial genome</u> <u>assemblies</u> by integrating Oxford Nanopore Technologies (ONT) long-read sequencing with Illumina

short-read sequencing

PLOS COMPUTATIONAL BIOLOGY

EDUCATION

Assembling the perfect bacterial genome using Oxford Nanopore and Illumina sequencing

Ryan R. Wick^{1*}, Louise M. Judd², Kathryn E. Holt^{1,3}

 Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Australia,
Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia, 3 Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom

Head over to this repo's wiki for the tutorial and all supporting content.

Hybracter builds on the principles of Trycycler but incorporates short-read data polishing directly into the workflow \rightarrow minimal manual intervention

Fig. Comparison of the counts of SNVs, small (<60 bp) INDELs for the hybrid tools benchmarked

The Fleming Fund | SeqAfrica

Bouras et al. (2024). Microb Genom. 10(5):001244; https://github.com/gbouras13/hybracter

Short vs Long vs Hybrid sequencing - What's in the literature?

- <u>Advantages of long- and short-reads sequencing for the hybrid investigation of</u> the Mycobacterium tuberculosis genome (Feb, 2023)
- **Background**: *Mycobacterium tuberculosis* (MTB) genome contains ~10% PE/PPE family genes, characterized by GC-rich repetitive regions.
- **Challenge**: Short-read sequencing (SRS) struggles with accurately mapping these repetitive regions, leading to incomplete assemblies.
- **Objective**: Evaluate and compare the effectiveness of SRS, long-read sequencing (LRS), and hybrid sequencing (HYBR) in analysing the MTB genome.

Di Marco F, Spitaleri A, Battaglia S, Batignani V, Cabibbe AM, Cirillo DM. Advantages of long- and short-reads sequencing for the hybrid investigation of the *Mycobacterium tuberculosis* genome. Front Microbiol. 2023 Feb 2;14:1104456. doi: 10.3389/fmicb.2023.1104456. PMID: 36819039; PMCID: PMC9932330.

The Fleming Fund | SeqAfrica

Advantages of long- and short-reads sequencing for the hybrid investigation of the *Mycobacterium tuberculosis* genome

Methods

- Sample Set: 13 clinical MTB isolates.
- Sequencing Techniques:
 - SRS: High-accuracy short reads.
 - LRS: Longer reads capable of spanning repetitive regions.
 - HYBR: Combination of SRS and LRS, with long reads corrected using short reads.
- Analytical Focus:
 - Genome coverage estimation.
 - Variant calling and cluster analysis.
 - Drug resistance detection.
 - De novo assembly evaluation.

Di Marco F, Spitaleri A, Battaglia S, Batignani V, Cabibbe AM, Cirillo DM. Advantages of long- and short-reads sequencing for the hybrid investigation of the *Mycobacterium tuberculosis* genome. Front Microbiol. 2023 Feb 2;14:1104456. doi: 10.3389/fmicb.2023.1104456. PMID: 36819039; PMCID: PMC9932330.

Results

- Genome Coverage:
 - HYBR provided superior coverage, especially in GC-rich PE/PPE regions.
- Variant Calling:
 - HYBR approach enhanced the accuracy of single nucleotide polymorphism (SNP) detection.
- Drug Resistance Detection:
 - All three methods identified known resistance mutations, but HYBR offered higher confidence levels.
- De Novo Assembly:
 - HYBR assemblies were more contiguous and accurate, effectively resolving repetitive regions.

	SRS	LRS	HYBR		
Genome Coverage	Low coverage in repetitive regions (41/169)				
Variant Calling Comparative Analysis		High-coverage to overcome error rate			
Drug Resistance	\bigcirc	\bigcirc			
De Novo Assembly	High number of contigs Low NG50				

Di Marco F, Spitaleri A, Battaglia S, Batignani V, Cabibbe AM, Cirillo DM. Advantages of long- and short-reads sequencing for the hybrid investigation of the *Mycobacterium tuberculosis* genome. Front Microbiol. 2023 Feb 2;14:1104456. doi: 10.3389/fmicb.2023.1104456. PMID: 36819039; PMCID: PMC9932330.

Conclusions

- Advantages of Hybrid Sequencing:
 - Combines the accuracy of SRS with the extended reach of LRS.
 - Delivers comprehensive genome assemblies, crucial for understanding MTB's genetic structure.
 - Improves detection of variants and drug resistance markers, aiding in better clinical decision-making.
- Recommendation: Implementing hybrid sequencing approaches is highly beneficial for the genomic investigation of MTB and potentially other organisms with complex genomes.

Should I use Unicycler or Trycycler to assemble my bacterial genome?

- If you have lots of long reads (~100× depth or more), use Trycycler+polishing. If you have sparse long reads (~25× or less), use Unicycler. If your long-read depth falls between those values, it might be worth trying both approaches.
- Unicycler works best when the short-read set is very good (deep and complete coverage) which yields a nice short-read assembly graph for scaffolding. Conversely, when Unicycler fails, it's usually due to problems with the short-read assembly graph.
- The Trycycler+polishing approach is much less dependent on the quality of the short-read set. However, Trycycler requires a deep long-read set while Unicycler does not.
- Occasions where small misassemblies occur within short-read contigs in Unicycler (made by <u>SPAdes</u>). This usually happens in repetitive regions of the genome. Since Unicycler builds its final assembly by scaffolding the short-read contigs, any misassemblies they contain will persist in the final assembly. Trycycler seems to do much better in such regions.

A note on Unicycler

- Unicycler was built in a different time (2016) when Oxford Nanopore read sets could be quite shallow, so it was necessary to rely more on short-read sets.
- Since then, improvements in Oxford Nanopore yield have largely fixed that problem.
- SoTrycycler+polishing is probably the best way to do a hybrid bacterial genome assembly, with Unicycler as a fall-back option for cases where your short-read set is good but your long-read set is weak.

Autocycler (re-written Trycycler)

- <u>Autocycler</u> was released end of 2024
- A complete rewrite of Trycycler designed for improved performance and automation.

https://github.com/rrwick/Autocycler

eu

steps

Let's take a break 😳

Assembly QC

Why Assembly QC is Important?

.fastq File

Fleming Fund | SegAfrica

Overview of Assembly QC

from mistakes (e.g., using polishing tools):

- Check for self consistency
- Align all the reads back to contigs
- Look for inconsistencies

Proportion of the original genome

represented by the assembly

BUSCO

from QC to gene prediction and phylogenomics

(estimates genome completeness - based on

core genes)

https://busco.ezlab.org/

(estimates genome completeness and

contamination - core genes)

https://ecogenomics.github.io/CheckM/

Provides comprehensive <u>metrics</u> and visual reports to assess the accuracy, completeness, and contiguity of assemblies \rightarrow suitable for *de novo* short-read, long-read, and hybrid assemblies

\$ quast.py -r ~/tutorial/raw_data/reference.fasta -g ~/tutorial/raw_data/annotation.gff -o quast_results ~/assembly/my_hybrid_assembly.fasta

All statistics are based on contigs of size >= 500 bp, unless otherwise noted (e.g., "# contigs (>= 0 bp)" and "Total length (>= 0 bp)" include all contigs).

Isolate 3 SPADES Isolate 3 SKESA Isolate 3 Flye Isolate 3 Hybracter

Aligned to "Isolate_3_Unicycler" | 5 339 413 bp | 3 fragments | 51.89% G+C

WorstMedianBestShow heatmapGenome statisticsIsolate_3_SPAGenome fraction (%)98.634Duplication ratio1

Genome fraction (%)	98.634	98.224	100	100
Duplication ratio	1	1	1	1
Largest alignment	418 481	386 345	4 972 900	4 972 906
Total aligned length	5 267 928	5 244 491	5 337 245	5 339 411
NGA50	238 829	223 407	4 972 900	4 972 906
LGA50	9	9	1	1
Misassemblies				
# misassemblies	1	0	3	0
Misassembled contigs length	55 374	0	366 501	0
Mismatches				
# mismatches per 100 kbp	0.23	0.51	1.72	0.97
# indels per 100 kbp	0.04	0.02	0.28	0.07
# N's per 100 kbp	0	0	0	0
Statistics without reference				
# contigs	73	70	2	3
Largest contig	418 481	386 345	4 972 900	4 972 906
Total length	5 268 036	5 246 420	5 339 401	5 339 411
Total length (>= 1000 bp)	5 2 5 6 8 4 3	5 241 952	5 339 401	5 339 411
Total length (>= 10000 bp)	5 178 984	5 152 802	5 339 401	5 339 411
Total length (>= 50000 bp)	4 909 047	4 695 688	5 339 401	5 339 411

GenomeFraction(%):percentage ofthe referencegenome thatiscovered bytheassembledcontigs→related to the TotalAlignedLength

NGA50: the length of the contig at which 50% of the reference genome is covered by contigs of that length or larger \rightarrow higher NGA50, better assembly continuity

LGA50: the smallest number of aligned contigs that together constitute 50% of the reference genome size \rightarrow smaller LGA50, better assembly continuity

All statistics are based on contigs of size > = 500 bp, unless otherwise noted (e.g., "# contigs (> = 0 bp)" and "Total length (> = 0 bp)" include all contigs).

Aligned to "Isolate_3_Unicycle Worst Median Best	r" 5 339 413 bp 3 fra Show heatmap	Igments 51.89% G-	+C		Mismatches and I number of base
Genome statistics	Isolate_3_SPADES	Isolate_3_SKESA	Isolate_3_Flye	Isolate_3_Hybracter	······································
Genome fraction (%)	98.634	98.224	100	100	Insertions/deletio
Duplication ratio	1	1	1	1	
Largest alignment	418 481	386 345	4 972 900	4 972 906	bp → lower n
Total aligned length	5 267 928	5 244 491	5 337 245	5 339 411	
NGA50	238 829	223 407	4 972 900	4 972 906	higher accuracy
LGA50	9	9	1	1	
Misassemblies					
# misassemblies	1	0	3	0	
Misassembled contigs length	55 374	0	366 501	0	Contigs: total nur
Mismatches					J
# mismatches per 100 kbp	0.23	0.51	1.72	0.97	in the assembly \dashv
# indels per 100 kbp	0.04	0.02	0.28	0.07	,
# N's per 100 kbp	0	0	0	0	generally sug
Statistics without reference					
# contigs	73	70	2	3	contiguity
Largest contig	418 481	386 345	4 972 900	4 972 906	
Total length	5 268 036	5 246 420	5 339 401	5 339 411	Often, contigs be
Total length (>= 1000 bp)	5 2 5 6 8 4 3	5 241 952	5 339 401	5 339 411	
Total length (>= 10000 bp)	5 178 984	5 152 802	5 339 401	5 339 411	threshold are not
Total length (>= 50000 bp)	4 909 047	4 695 688	5 339 401	5 339 411	
					200 bp or 500 bp)

The Fleming Fund | SeqAfrica

Mismatches and Indels: average number of base mismatches or insertions/deletions per 100.000 bp 🔿 lower number suggest higher accuracy

Contigs: total number of contigs in the assembly \rightarrow fewer contigs generally suggest better contiguity Often, contigs below a certain threshold are not counted (e.g.,

BUSCO

•	Evaluate the completeness of								
	genome assemblies by								
	determining how many highly								
	<u>conserved</u> , <u>single-copy</u>								
	orthologous genes are present in								
	the assembly								
•	Provides a quantitative measure								
	of genome quality by checking for								
	the presence completeness and								

duplication of the core genes

BUSCO

Install BUSCO

\$ conda install -c conda-forge -c bioconda busco=5.8.2

Check all available datasets

\$ busco --list-datasets

Run QUAST in your assembly FASTA files

#-m: Mode (genome, proteins, or transcriptome)

\$ busco -i ~/assembly/my_hybrid_assembly.fasta -l bacteria_odb12 -o busco_results -m geno

BUSCO relies on taxonomy- and lineage-specific datasets of universal single-copy orthologs. It provides precomputed datasets of orthologs for specific taxonomic groups (e.g., bacteria_odb12) or lineages (e.g., enterobacterales_odb12)

BUSCO

Uses tools like HMMER and BLAST to search for orthologs in the genome assembly, identifying their

presence, length, and completeness

Orthologous genes are classified into the following categories: **Complete (C):** Present and full-length **Duplicated (D):** Present more than once, indicating **duplication Fragmented (F): Partial** genes present, likely due to assembly gaps Missing (M): Genes not found, indicating incomplete regions

Designed to assess the quality (<u>completeness</u>, <u>contamination</u>, and <u>heterogeneity</u>) of genome assemblies based on the presence of lineage-specific markers (present in ≥97% of genomes), with a focus on microbial (bacterial and archaeal) and metagenomic assemblies

The Fleming Fund | SeqAfrica

Parks et al. (2015). Genome Res. 25(7):1043-55; https://github.com/Ecogenomics/CheckM/; https://github.com/chklovski/CheckM2

Install CheckM

\$ conda install -c bioconda checkm-genome

Download the database

\$ wget https://data.ace.uq.edu.au/public/CheckM_databases/checkm_data_2015_01_16.tar.gz

Run CheckM in your assembly FASTA files

\$ checkm lineage_wf -t 20 -f results_checkm.txt --tab_table -x fasta /home/Databases/CheckM_DB/bins <output folder>

It can automatically in<u>fer the lineage</u> and evaluate quality of

the genome without requiring pre-

selection of a dataset

...

= Galaxy

A high-quality genome typically has >90% completeness and <5% contamination

Ideally it should be "0"

Bin Id	Marker lineage	#genomes	# markers	# marker sets	0	1 2	3	4	5	Completeness	Contamination	Strain heterogeneity
Isolate_3_Flye	f_Enterobacteriaceae (UID5139)	119	1169	340	0	1166 2	1	0	0	100.00	0.15	0.00
Isolate_3_Hybracter	f_Enterobacteriaceae (UID5139)	119	1169	340	0	1166 2	1	0	0	100.00	0.15	0.00
Isolate_3_SKESA	f_Enterobacteriaceae (UID5139)	119	1169	340	0	1166 2	1	0	0	100.00	0.15	0.00
Isolate_3_SPADES	f_Enterobacteriaceae (UID5139)	119	1169	340	0	1166 2	1	0	0	100.00	0.15	0.00
Isolate_3_Unicycler	f_Enterobacteriaceae (UID5139)	119	1169	340	0	1166 2	1	0	0	100.00	0.15	0.00

- **Completeness (%)** percentage of genome that is complete
- Contamination (%) is always calculated based on the number of markers that are detected more than 1 time
- Strain heterogeneity (SH) measures the sequence variation (genetic variability) between duplicated marker genes in a genome assembly (SH = 0 identical sequences; SH > 0 different sequences).

Let's take a break 😳

Thank you

This programme is being funded by the UK Department of Health and Social Care. The views expressed do not necessarily reflect the UK Government's official policies.

