#### Whole Genome Sequencing and Bioinformatics SeqAfrica Training

Marco van Zwetselaar Niamh Lacy-Roberts Day 3











# Introduction to Antimicrobial Resistance (AMR)



#### Introduction to antimicrobial resistance (AMR)

- AMR is when bacteria, viruses, fungi or parasites no longer respond to antimicrobial medicines.
- As a result of drug resistance, antibiotics and other antimicrobial medicines become ineffective and infections become difficult or impossible to treat.
- Increases the risk of disease spread, severe illness, disability and death.



The Fleming Fund | SeqAinca

Generated with AI by L.H. Sørensen • Microsoft copilot • September 30,



The Fleming Fund Regional Grants Burden of AMR

- 1,2 million deaths were directly attributed and 4,9 million associated with AMR in 2021.<sup>1</sup>
- Death attributed to AMR in people above 5 years increase across all regions between 1990-2021, except in Central and Western Europe.<sup>1</sup>
- Main drivers thought to be Antimicrobial usage and lack of antimicrobial stewardship.<sup>2</sup>
- Low and middle income countries are the affected most by AMR, but there are major disparities in AMR reporting.<sup>1</sup>



**1)** Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050, Naghavi, Mohsen et al. The Lancet, Volume 404, Issue 10459, 1199 – 1226

2024

2) Global antimicrobial-resistance drivers: an ecological country-level study at the human-animal interface. Allel, Kasim et al., The Lancet Planetary Health, The Fleming Fund | SeqAfrica



DANMAP The Danish Integrated Antimicrobial Resistance Monitoring and Research Programme

About Press releases Reports Seminars Contact

## DANMAP

DANMAP is the Danish Programme for surveillance of antimicrobial consumption and resistance in bacteria from food animals, food and humans.

REPORT 2023 LATEST PRESS RELEASE

<u>https://www.danmap.org/</u>



### **AMR in Denmark**

- Reports on:
  - Antimicrobial consumption in Humans.
  - Antimicrobial consumption in Animals.
  - Resistance in human pathogens.
  - Resistance in indicator bacteria from animal side.
  - Zoonotic pathogens.
  - Animal pathogens.
  - General trends compared to previous years.
- Collaboration with farmers based on voluntary systems.





### **Importance of AMR surveillance**

- AMR surveillance is crucial because it allows for
  - the early detection of resistant bacterial strains,
  - tracking trends in resistance patterns,
  - informing clinical decision-making,
  - guiding policy development,
  - enabling effective interventions to combat the growing threat of AMR
  - mitigating resistance development and spread.





### **AMR genomic background**





### **AMR genomic background**





### **AMR genomic background**

Resistance by





### **AMR in bacteria**

- AMR can arise by several mechanisms in the cell:
  - Efflux of antimicrobials
  - Enzyme inactivation
  - Target modification
  - Reducing uptake
- Phenotypic AMR can be a result of several mechanisms working in tandem.





### **Efflux pumps**

• Active transportation of antibiotics out of the cell.

- Can provide increased tolerance of wide variety of antibiotics, e.g. mdfA in E. coli exports a large number of toxins, including several classes of antimicrobials.
- Increased tolerance can be achieved by a number of mechanisms:
  - High expression
  - High copy number
  - Structural variation
- Synergy with other resistance mechanisms.





### **Target modification**

- Modification of target, either by a change in structure or specific motif can prevent binding of antibiotics.
- E.g. gyrase A in a number of pathogens (e.g. E. coli, S. enterica) prevents binding of fluoroquinolones such as ciprofloxacin.
- Several positions in the protein can confer or increase resistance.
- Gyrase A mutation very common in poultry production, and apparently stable (low cost of fitness)





### Inactivation

- Enzymes that break down antimicrobials.
- Includes classes of high priority to public health, such as Extended beta-lactamases (ESBL) genes CTX-M, SHV
- Includes antimicrobial classes of critical importance and last resort drugs in infections such as carbapenemases (e.g. NDM, OXA-48like, KPC)
- Acquired genes, overexpression of intrinsic genes, mutational gain-of-function in intrinsic genes.





### **Reduced uptake**

- Reduced uptake can happen by several mechanisms:
  - Mutational loss-of-function.
  - Reduced expression.
  - Natural (intrinsic) regulation.
- Synergy between reduced uptake and natural inactivation of enzymes (e.g. porA mutation in campylobacter increases carbapenem tolerance.





### Horizontal gene transfer (HGT) - plasmids

- Plasmids are a major concern in the dissemination of acquired resistance genes.
- Plasmids can function as "genomic parasites", propagating through bacterial populations.
- Self-transmissible plasmids carry conjugative elements and can initiate their own transfer to other cells.
- Mobilizable plasmids carry mobilization genes, but are dependent on other sources of conjugation.
- Some investigation into plasmid transferring, despite lack of mobilization or conjugative elements.







### **Other mobile genetic elements (MGE)**

- Other modes of DNA transfer exists:
  - Transduction by phages
  - Natural transformation by integration of environmental DNA
- Frequency of specific HGTs vary between species.
- Smaller units of mobile genetic elements aid the transfer of AMR genes by integrating into plasmids.
  - Integrons.
  - Transposons.



Rozwadowski, M.; Gawel, D. Molecular Factors and Mechanisms Driving Multidrug Resistance in Uropathogenic *Escherichia coli*—An Update. *Genes* **2022**, *13*, 1397. https://doi.org/10.3390/genes13081397



### **Full genome annotation**

- With Whole genome sequencing (WGS) we capture (almost) everything in the cell
  - Prokka: rapid prokaryotic genome annotation (<u>GitHub tseemann/prokka: Rapid</u> prokaryotic genome annotation)
  - ANNOVAR: Higher organisms (ANNOVAR Documentation (openbioinformatics.org))
  - NCBI-PGAP: Prokaryotic annotation (<u>NCBI Prokaryotic Genome Annotation Pipeline</u> (<u>nih.gov</u>))

3

- Predictive annotation: eggNOG-mapper (eggNOG-mapper (embl.de))
- These pipelines usually generate multiple output files, which can be used for further data handling or visualization
- There are multiple visualization tools, e.g. IGV, which can be installed locally or used online. Fleming Fund | SeqAfrical

| 2.189 kb 2.170 kb 2.171 kb 2.172 kb<br>2.189 kb 2.170 kb 2.172 kb<br>2.189 kb 2.170 kb 2.172 kb<br>2.170 kb 2.172 |          |         |          |                                       |                             |                 |                   |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|----------|---------------------------------------|-----------------------------|-----------------|-------------------|----------|
| 2.10 k8     2.10 k8     2.17 k8     2.17 k8       2.10 k8     2.17 k8     2.17 k8     2.17 k8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |         |          |                                       |                             |                 |                   |          |
| > > > > > > > > > > > > > > > > > > >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,109 KD |         | 2,170 KD | 2,1                                   | /1 KD                       | 2,1             | 1/2 KD            |          |
| > > > > > > > > > > > > > > > > > > >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |         |          |                                       |                             |                 |                   |          |
| Name insF5<br>Type gene<br>Source RefSeq<br>Dbxref: ASAP:ABE-0006919,ECOCYC:G7126,GeneID:946629<br>gbkey: Gene<br>gene: insF5<br>gene_biotype: protein_coding<br>gene_synonym: ECK0299,tra5-4<br>locus_tag: b2089<br>Location NC 000913 3:2 170 532-2 171 398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |         |          |                                       |                             |                 |                   |          |
| Image: Control of the control of th                                                                                                                                                                                                                                                 |          | , , , , |          |                                       |                             |                 |                   | <b>`</b> |
| Name insF5<br>Type gene<br>Source RefSeq<br>Dbxref: ASAP:ABE-0006919,ECOCYC:G7126,GeneID:946629<br>gbkey: Gene<br>gene: insF5<br>gene_biotype: protein_coding<br>gene_synonym: ECK0299,tra5-4<br>locus_tag: b2089<br>Location_NC_000913 3:2 170 532-2 171 398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |         | < < < <  | · · · · · · · · · · · · · · · · · · · | I                           | < <             |                   |          |
| Name insF5<br>Type gene<br>Source RefSeq<br>Dbxref: ASAP:ABE-0006919,ECOCYC:G7126,GeneID:946629<br>gbkey: Gene<br>gene: insF5<br>gene_biotype: protein_coding<br>gene_synonym: ECK0299,tra5-4<br>locus_tag: b2089<br>Location NC 000913 3:2 170 532-2 171 398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |         | _        |                                       |                             |                 |                   |          |
| Name insF5<br>Type gene<br>Source RefSeq<br>Dbxref: ASAP:ABE-0006919,ECOCYC:G7126,GeneID:946629<br>gbkey: Gene<br>gene: insF5<br>gene_biotype: protein_coding<br>gene_synonym: ECK0299,tra5-4<br>locus_tag: b2009<br>Location NC 000913 3:2 170 532-2 171 398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |         |          | · ·                                   |                             |                 |                   |          |
| Name insF5<br>Type gene<br>Source RefSeq<br>Dbxref: ASAP:ABE-0006919,ECOCYC:G7126,GeneID:946629<br>gbkey: Gene<br>gene: insF5<br>gene_biotype: protein_coding<br>gene_synonym: ECK0299,tra5-4<br>locus_tag: b2009<br>Location_NC_000913 3:2 170 532-2 171 398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |         |          | > > >                                 | $\rightarrow$ $\rightarrow$ |                 |                   |          |
| Name insF5<br>Type gene<br>Source RefSeq<br>Dbxref: ASAP:ABE-0006919,ECOCYC:G7126,GenelD:946629<br>gbkey: Gene<br>gene: insF5<br>gene_biotype: protein_coding<br>gene_synonym: ECK0299,tra5-4<br>locus_tag: b2009<br>Location_NC_000913 3:2 170 532-2 171 398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |         |          |                                       |                             |                 |                   |          |
| Name insF5<br>Type gene<br>Source RefSeq<br>Dbxref: ASAP:ABE-0006919,ECOCYC:G7126,GeneID:946629<br>gbkey: Gene<br>gene: insF5<br>gene_biotype: protein_coding<br>gene_synonym: ECK0299,tra5-4<br>locus_tag: b2009<br>Location_NC_000913 3:2 170,532-2 171 398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |         |          |                                       | , , ,                       |                 |                   |          |
| Type gene<br>Source RefSeq<br>Dbxref: ASAP:ABE-0006919,ECOCYC:G7126,GeneID:946629<br>gbkey: Gene<br>gene: insF5<br>gene_biotype: protein_coding<br>gene_synonym: ECK0299,tra5-4<br>locus_tag: b2009<br>Location_NC_000913 3:2 170,532-2 171,398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |         |          | Name in                               | eF5                         |                 |                   |          |
| Source RefSeq<br>Dbxref: ASAP:ABE-0006919,ECOCYC:G7126,GeneID:946629<br>gbkey: Gene<br>gene: insF5<br>gene_biotype: protein_coding<br>gene_synonym: ECK0299,tra5-4<br>locus_tag: b2089<br>Locastion_NC_000913 3:2 170 532-2 171 398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |         |          | Type de                               | no .                        |                 |                   |          |
| Dbxref: ASAP:ABE-0006919,ECOCYC:G7126,GeneID:946629<br>gbkey: Gene<br>gene: insF5<br>gene_biotype: protein_coding<br>gene_synonym: ECK0299,tra5-4<br>locus_tag: b2089<br>Location_NC_000913 3:2 170 532-2 171 398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |         |          | Source                                | RefSer                      |                 |                   |          |
| gbkey: Gene<br>gene: insF5<br>gene_biotype: protein_coding<br>gene_synonym: ECK0299,tra5-4<br>locus_tag: b2089<br>Location NC_000913 3:2 170 532-2 171 398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |         |          | Dhyrof                                | ASAD-ARE 000                |                 | 7126 CopolD:04662 | a        |
| gene: insF5<br>gene_biotype: protein_coding<br>gene_synonym: ECK0299,tra5-4<br>locus_tag: b2089<br>Location NC_000913 3:2 170 532-2 171 398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |         |          | abkey: (                              | Gana                        | 0919,200010.0   | 120,GeneiD.34002  |          |
| gene_biotype: protein_coding<br>gene_synonym: ECK0299,tra5-4<br>locus_tag: b2089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          | goney.                                | oene<br>oEE                 |                 |                   |          |
| gene_synonym: ECK0299,tra5-4<br>locus_tag: b2089<br>Location: NC_000913.3:2.170.532-2.171.398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |         |          | gene. in                              | stype: protein              | coding          |                   |          |
| locus_tag: b2089<br>Location: NC 000913 3:2 170 532-2 171 398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |         |          | gene_bio                              | nonvm: ECK0                 | 200 tra£ /      |                   |          |
| Locus_taty, NC 000913 3-2 170 532-2 171 398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |         |          | gene_syn                              | a. 62089                    | 100,0a0-4       |                   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |         |          | locus_lag                             | NC 000012 2                 | 2 170 532 2 171 | 308               |          |



### **Annotation: AMR tools**

- Resfinder
  - Developed at DTU
- AMRfinderplus
  - Developed at NCBI
- CARD
  - Developed at McMaster University
- Databases and search strategies depends on the tool.
- Curation is a major limiting factor in trustworthy and precise translation of genotype to phenotype.



**Generated with AI** by L.H. Sørense**M**icrosoft copilot October 1, 2024



#### Version

#### 4.6.0 🗸

ResFinder identifies acquired genes and/or finds chromosomal mutations mediating antimicrobial resistance in total or partial DNA sequence of bacteria.

ResFinder software: (2024-03-22) ResFinder database: (2024-03-22) PointFinder database: (2024-03-08) DisinFinder database: (2023-05-31)

#### Chromosomal point mutations:

#### Threshold for %ID 90% Minimum length 60% Show unknown mutations Ignore premature stop codons: Ignore frameshift indels:

#### Acquired antimicrobial resistance genes:

| Thre | eshold for %ID |  |  |
|------|----------------|--|--|
| 9(   | 0%             |  |  |
| Mini | imum length    |  |  |
| 60   | 0%             |  |  |

#### Species and input data type:

Select species

Other

~

×

Select input type

FASTA (Assembled Genome/Contigs)



~

×

#### http://genepi.food.dtu.dk/resfinder The Fleming Fund | SeqAfrica

|                | RGI<br>Criteria | ARO Term              | SNP * | Detection<br>Criteria | AMR<br>Gene Family                                                                                                                            | Drug<br>Class                                                                                                                                                                                                              | Resistance<br>Mechanism                               | % Identity of Matching Region | % Length of Reference Sequence |
|----------------|-----------------|-----------------------|-------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------|--------------------------------|
|                | Perfect         | acrB                  |       | protein homolog model | resistance-nodulation-cell division (RND)<br>antibiotic efflux pump                                                                           | fuoroquinalone antibiotic, cephalosporin, glycylcycline,<br>penam, tetracycline antibiotic, nfamydin antibiotic,<br>phenicol antibiotic, disinfecting agents and antiseptics                                               | antibiotic efflux                                     | 100.0                         | 100.00                         |
| Reg            | Perfect         | Escherichia coli acrA |       | protein homolog model | resistance-nodulation-cell division (RND)<br>antibiotic efflux pump                                                                           | fluoroquinalane antibiotic, cephalosporin, glycy/cycline,<br>penam, tetracycline antibiotic, rifamycin antibiotic,<br>phenicol antibiotic, disinfecting agents and antiseptics                                             | antibiotic efflux                                     | 100.0                         | 100.00                         |
|                | Perfect         | Escherichia coli emrE |       | protein homolog model | small multidrug resistance (SMR) antibiotic<br>efflux pump                                                                                    | macrolide antibiotic                                                                                                                                                                                                       | antibiotic efflux                                     | 100.0                         | 100.00                         |
|                | Perfect         | kdpE                  |       | protein homolog model | kdpDE                                                                                                                                         | aminoglycoside antibiotic                                                                                                                                                                                                  | antibiotic efflux                                     | 100.0                         | 100.00                         |
| EXAIVIPLE      | Perfect         | Adam                  |       | protein homolog model | ATP-binding cassette (ABC) antibiotic efflux<br>pump                                                                                          | nitoimidazole antibiotic                                                                                                                                                                                                   | artibiotic efflux                                     | 100.0                         | 100.00                         |
| CARD output:   | Perfect         | mdtG                  |       | protein homolog model | major facilitator superfamily (MFS) antibiotic<br>efflux pump                                                                                 | phosphonic acid antibiotic                                                                                                                                                                                                 | antibiotic efflux                                     | 100.0                         | 100.00                         |
|                | Perfect         | rndtH                 |       | protein homolog model | major facilitator superfamily (MFS) antibiotic efflux pump                                                                                    | fluoroquinolane antibiotic                                                                                                                                                                                                 | antibiotic efflux                                     | 100.0                         | 100.00                         |
| Data was       | Perfect         | HNS                   |       | protein homolog model | major facilitator superfamily (MFS) antibiotic<br>efflux pump, resistance-nodulation-cell<br>division (RND) antibiotic efflux pump            | macrolide artibiotic, fluoroquinolone artibiotic,<br>cephalosponin, cephamycin, penam, tetracycline<br>antibiotic                                                                                                          | antibiotic efflux                                     | 100.0                         | 100.00                         |
| complete       | Perfect         | marA                  |       | pratein homolog model | resistance-nodulation-cell division (RND)<br>antibiotic efflux pump, General Bacterial<br>Porin with reduced permeability to beta-<br>lactams | fluoroquinalone antibiotic, monobactam, carbapenem,<br>cephaloapoin, glycylcydine, cephamydin, penam,<br>tetracycline antibiotic, rifamydin antibiotic, phenicol<br>antibiotic, penem, disinfecting agents and antiseptics | artibiotic efflux, reduced permeability to antibiotic | 100.0                         | 100.00                         |
|                | Perfect         | ugd                   |       | protein homolog model | pmr phosphoethanolamine transferase                                                                                                           | peptide antibiotic                                                                                                                                                                                                         | antibiotic target alteration                          | 100,0                         | 100.00                         |
| Coli strain    | Perfect         | mdiA                  |       | pratein homolog model | resistance-nodulation-cell division (RND)<br>antibiotic efflux pump                                                                           | aminocoumarin antibiotic                                                                                                                                                                                                   | antibiotic efflux                                     | 100.0                         | 100.00                         |
|                | Perfect         | mdB                   |       | protein homolog model | resistance-nodulation-cell division (RND)<br>antibiotic efflux pump                                                                           | aminocoumarin antibiotic                                                                                                                                                                                                   | antibiotic efflux                                     | 100.0                         | 100.00                         |
| 11 hits in     | Perfect         | mdtC                  |       | protein homolog model | resistance-nodulation-cell division (RND)<br>antibiotic efflux pump                                                                           | aminocoumarin antibiotic                                                                                                                                                                                                   | antibiotic efflux                                     | 100.0                         | 100.00                         |
| totall         | Perfect         | hseS                  |       | protein homolog model | resistance-nodulation-cell division (RND)<br>antibiotic efflux pump                                                                           | aminoglycoside antibiotic, aminocoumarin antibiotic                                                                                                                                                                        | antibiotic efflux                                     | 100.0                         | 100.00                         |
| וטומו:         | Perfect         | baeR                  |       | protein homolog model | resistance-nodulation-cell division (RND)<br>antibiotic efflux pump                                                                           | aminoglycoside antibiotic, aminocoumarin antibiotic                                                                                                                                                                        | antibiotic efflux                                     | 100.0                         | 100.00                         |
|                | Perfect         | Yoji                  |       | protein homolog model | ATP-binding cassette (ABC) antibiotic efflux<br>pump                                                                                          | peptide antibiotic                                                                                                                                                                                                         | antibiotic efflux                                     | 100.0                         | 100.00                         |
| l et us take a | Perfect         | PmrF                  |       | protein homolog model | pmr phosphoethanolamine transferase                                                                                                           | peptide antibiotic                                                                                                                                                                                                         | antibiotic target alteration                          | 100.0                         | 100.00                         |
| closer look    | Perfect         | errrY                 |       | protein homolog model | major facilitator superfamily (MFS) antibiotic<br>efflux pump                                                                                 | tetracycline antibiotic                                                                                                                                                                                                    | antibiotic efflux                                     | 100.0                         | 100.00                         |
| CIUSEI IUUK    | Perfect         | emiK                  |       | protein homolog model | major facilitator superfamily (MFS) antibiotic<br>efflux pump                                                                                 | tetracycline antibiotic                                                                                                                                                                                                    | artibiotic efflux                                     | 100.0                         | 110.26                         |
|                | Perfect         | Agva                  |       | protein homolog model | major facilitator superfamily (MFS) antibiotic<br>efflux pump, resistance-nodulation-cell<br>division (RND) antibiotic efflux pump            | macrolide antibiotic, fluoroquinolone antibiotic, penam,<br>tetracycline antibiotic                                                                                                                                        | antibiotic efflux                                     | 100.0                         | 100.00                         |
|                | Perfect         | evgS                  |       | protein homolog model | major facilitator superfamily (MFS) antikiotic<br>efflux pump, resistance-nodulation-cell<br>division (RND) antibiotic efflux pump            | macrolide antibiotic, fluoroquinolone antibiotic, penam,<br>tetracycline antibiotic                                                                                                                                        | antibiotic efflux                                     | 100.0                         | 100.00                         |
|                | Perfect         | acrD                  |       | protein homolog model | resistance-nodulation-cell division (RND)<br>antibiotic efflux pump                                                                           | aminoglycoside antibiotic                                                                                                                                                                                                  | antibiotic efflux                                     | 100.0                         | 100.00                         |
|                | Perfect         | emrR                  |       | protein homolog model | major facilitator superfamily (MFS) antibiotic efflux pump                                                                                    | fluoroquinalane antibiolic                                                                                                                                                                                                 | antibiotic efflux                                     | 100.0                         | 100.00                         |
|                | Perfect         | errrA                 |       | protein homolog model | major facilitator superfamily (MFS) antibiotic efflux pump                                                                                    | fluoroquinolone antibiotic                                                                                                                                                                                                 | antibiotic efflux                                     | 100.0                         | 100.00                         |
|                | Perfect         | errB                  |       | protein homolog model | major facilitator superfamily (MFS) antibiotic efflux pump                                                                                    | fluaroquinalane antibiotic                                                                                                                                                                                                 | antibiotic efflux                                     | 100.0                         | 100.00                         |
|                |                 |                       |       | The Flor              | ning Eurod   CogAfria                                                                                                                         |                                                                                                                                                                                                                            |                                                       |                               | 01                             |



**EXAMPLE** CARD output:

- EmrY, emrK and emrB
- Perfect hits!
  - Expect for emrK, ID and COV are 100%
- Should we expect resistance to tetracycline and fluoroquinolones in this isolate?

| RGI 🔺<br>Criteria   | AR   | ¢<br>RO Term      | SNP          | Detection<br>Criteria                     | ÷           | AMR<br>Gene Family                                               | ¢ |
|---------------------|------|-------------------|--------------|-------------------------------------------|-------------|------------------------------------------------------------------|---|
| Perfect             | j    | emrY              |              | protein homolog                           | model       | major facilitator<br>superfamily (MFS)<br>antibiotic efflux pum  | p |
| Perfect             | 1    | emrK              |              | protein homolog                           | model       | major facilitator<br>superfamily (MFS)<br>antibiotic efflux pum  | р |
| Perfect             |      | emrB              |              | protein homolog model                     |             | major facilitator<br>superfamily (MFS)<br>antibiotic efflux pump |   |
| Drug<br>Class       | ¢    | Resista<br>Mechan | nce ≑<br>ism | % Identity of<br>Matching     ≑<br>Region | %<br>F<br>S | Length of<br>Reference<br>Sequence                               |   |
| tetracycline antibi | otic | antibiotic efflu  | х            | 100.0                                     |             | 100.00                                                           |   |

100.0

100.0

110.26

100.00

antibiotic efflux

antibiotic efflux

tetracycline antibiotic

fluoroquinolone antibiotic



#### Lets try a different tool for the strain: ResFinder

• No resistance at all?

#### **ResFinder-4.1 Server - Results**

#### Input Files: GCF\_000005845.2\_ASM584v2\_genomic.fna

#### Warning:

One or more resistance genes does not exist in the phenotype database. The Summary table does not take this into account.

| escherichia coli comple    | te                        |                         |
|----------------------------|---------------------------|-------------------------|
| Antimicrobial              | Class                     | WGS-predicted phenotype |
| amikacin                   | aminoglycoside            | No resistance           |
| tigecycline                | tetracycline              | No resistance           |
| tobramycin                 | aminoglycoside            | No resistance           |
| cefepime                   | beta-lactam               | No resistance           |
| chloramphenicol            | amphenicol                | No resistance           |
| piperacillin+tazobactam    | beta-lactam               | No resistance           |
| cefoxitin                  | beta-lactam               | No resistance           |
| ampicillin                 | beta-lactam               | No resistance           |
| ampicillin+clavulanic acid | beta-lactam               | No resistance           |
| cefotaxime                 | beta-lactam               | No resistance           |
| ciprofloxacin              | quinolone                 | No resistance           |
| colistin                   | polymyxin                 | No resistance           |
| sulfamethoxazole           | folate pathway antagonist | No resistance           |
| imipenem                   | beta-lactam               | No resistance           |
| trimethoprim               | folate pathway antagonist | No resistance           |
| nalidixic acid             | quinolone                 | No resistance           |
| ertapenem                  | beta-lactam               | No resistance           |
| tetracycline               | tetracycline              | No resistance           |
| fosfomycin                 | fosfomycin                | No resistance           |
| ceftazidime                | beta-lactam               | No resistance           |
| temocillin                 | beta-lactam               | No resistance           |
| gentamicin                 | aminoglycoside            | No resistance           |
| meropenem                  | beta-lactam               | No resistance           |
| azithromycin               | macrolide                 | No resistance           |



#### Lets try a different tool for the strain: ResFinder

- No resistance at all? •
- No resistance to • tetracycline or quinolones?

| Antimicrobial              | Class                     | WGS-predicted<br>phenotype | Genetic backgrou |
|----------------------------|---------------------------|----------------------------|------------------|
| amikacin                   | aminoglycoside            | No resistance              |                  |
| tigecycline                | tetracycline              | No resistance              |                  |
| tobramycin                 | aminoglycoside            | No resistance              |                  |
| cefe <mark>pime</mark>     | beta-lactam               | No resistance              |                  |
| chloramphenicol            | amphenicol                | No resistance              |                  |
| piperacillin+tazobactam    | beta-lactam               | No resistance              |                  |
| cefoxitin                  | beta-lactam               | No resistance              |                  |
| ampicillin                 | beta-lactam               | No resistance              |                  |
| ampicillin+clavulanic acid | beta-lactam               | No resistance              |                  |
| cefotaxime                 | beta-lactam               | No resistance              |                  |
| ciprofloxacin              | quinolone                 | No resistance              |                  |
| colistin                   | polymyxin                 | No resistance              |                  |
| sulfamethoxazole           | folate pathway antagonist | No resistance              |                  |
| imipenem                   | beta-lactam               | No resistance              |                  |
| trimethoprim               | folate pathway antagonist | No resistance              |                  |
| nalidixic acid             | quinolone                 | No resistance              |                  |
| ertapenem                  | beta-lactam               | No resistance              |                  |
| tetracycline               | tetracycline              | No resistance              |                  |
| fosfomycin                 | fosfomycin                | No resistance              |                  |
| ceftazidime                | beta-lactam               | No resistance              |                  |
| temocillin                 | beta-lactam               | No resistance              |                  |
| gentamicin                 | aminoglycoside            | No resistance              |                  |
| meropenem                  | beta-lactam               | No resistance              |                  |
| azithromycin               | macrolide                 | No resistance              |                  |

#### **ResFinder-4.1 Server - Results**

Input Files: GCF\_000005845.2\_ASM584v2\_genomic.fna

#### Warning:

One or more resistance genes does not exist in the phenotype database. The Summary table does not take this into account.



#### Lets try a different tool for the strain: ResFinder

- No resistance at all?
- No resistance to tetracycline or quinolones?
- One tool gives 44 hits, another gives 0 what is the truth?

|  | ResFind | ler-4.1 | Server | - Resul | ts |
|--|---------|---------|--------|---------|----|
|--|---------|---------|--------|---------|----|

#### Input Files: GCF\_000005845.2\_ASM584v2\_genomic.fna

#### Warning:

One or more resistance genes does not exist in the phenotype database. The Summary table does not take this into account.

| escherichia coli comple    | te                        |                            |                    |
|----------------------------|---------------------------|----------------------------|--------------------|
| Antimicrobial              | Class                     | WGS-predicted<br>phenotype | Genetic background |
| amikacin                   | aminoglycoside            | No resistance              |                    |
| tigecycline                | tetracycline              | No resistance              |                    |
| tobramycin                 | aminoglycoside            | No resistance              |                    |
| cefepime                   | beta-lactam               | No resistance              |                    |
| chloramphenicol            | amphenicol                | No resistance              |                    |
| piperacillin+tazobactam    | beta-lactam               | No resistance              |                    |
| cefoxitin                  | beta-lactam               | No resistance              |                    |
| ampicillin                 | beta-lactam               | No resistance              |                    |
| ampicillin+clavulanic acid | beta-lactam               | No resistance              |                    |
| cefotaxime                 | beta-lactam               | No resistance              |                    |
| ciprofloxacin              | quinolone                 | No resistance              |                    |
| colistin                   | polymyxin                 | No resistance              |                    |
| sulfamethoxazole           | folate pathway antagonist | No resistance              |                    |
| mipenem                    | beta-lactam               | No resistance              |                    |
| rimethoprim                | folate pathway antagonist | No resistance              |                    |
| nalidixic acid             | quinolone                 | No resistance              |                    |
| ertapenem                  | beta-lactam               | No resistance              |                    |
| tetracycline               | tetracycline              | No resistance              |                    |
| fosfomycin                 | fosfomycin                | No resistance              |                    |
| ceftazidime                | beta-lactam               | No resistance              |                    |
| temocillin                 | beta-lactam               | No resistance              |                    |
| gentamicin                 | aminoglycoside            | No resistance              |                    |
| meropenem                  | beta-lactam               | No resistance              |                    |
| azithromycin               | macrolide                 | No resistance              |                    |



### **Differences in output example**

- The strain run in this example is a standard laboratory strain E. coli K-12 substrain MG1655
- It is not expected to have any phenotypic resistance to tetracycline (Zhang et al., 2022)
  - Not actually expected to have any particular phenotypic resistance different from wild-type
  - e. coli
- If run on AMR finderplus, no resistance genes are found either.
- Approach databases with care and select based on your scope
  - How does results translate to the laboratory, genotypic =/= phenotypic
  - How much expertise is demanded to utilize findings
  - What is the aim of your analysis



### **hAMRonization**



https://github.com/pha4ge/hAMRonization The Fleming Fund | SeqAfrica



### Let's take a break 😳



## **Typing methods**



### Introduction to typing methods

- Phenotypic identification
  - Biochemical/metabolic analysis
  - Chromogenic media
  - AST
  - CIM test
- Molecular identification
  - PCR (genus/species/AST)
  - MALDI-TOF MS
  - Microarray (AMR)
  - MLST (PCR/Sequencing)



The Fleming Fund | SeqAfrica



Purpose of subtyping?

- Genus/Species determination
- Serotyping and MLST
  - Characterization and grouping of isolates
- cgMLST and SNP analysis
  - Comparison
- Resistance patterns
  - pMLST plasmids
  - Specific genes or combinations





### **Typing tools on CGE server**

- Species
  - KmerFinder (full genome) and/or SpeciesFinder (16s rRNA)
- Sub-typing
  - Serotyping (E. coli, P. aeruginosa, Salmonella)
- Typing
  - MLST
  - cgMLSTFinder
    - Campylobacter, Clostridum, E. coli, Listeria, Salmonella, Yersinia
  - pMLST
  - Plasmidfinder
  - VirueIncefinder
  - MGE
- Cluster analysis
  - CSIPhylogeny & MinTyper



### **Genotypic species verification**

- 16s rRNA gene formed the basis as the first method for sequenced based taxonomy
- Other approaches:
  - gyrB gene, rMLST, species-specific functional domain profiles
    - Only represents a small fraction of the entire genome
  - WGS data can provide higher discriminatory power e.g. between *Shigella* and *Escherichia* spp.





### **Prediction of species - Kmerfinder**

- With WGS we can use all the genetic information to predict the species
- Kmerfinder works by breaking a genome into little pieces (k-mers) and identifying the species from these pieces (k-mers)





### **Reminder: k-mers**

- A k-mer is a continuous sequence of k bases
  - e.g a certain length of DNA, RNA or protein
- There are 4^k combinations of a k-mer
- Using long k-mers provides a highly unique sequence
- Sequences with high similarity must share k-mers



• We can extract all the 4-mers (substrings of length 4) in this DNA sequence



### **Species prediction with k-mers**

- Sequences with high similarity must share k-mers
- We can break genomes up into k-mers and compare them





### **Species prediction with KmerFinder**





### **Species prediction with KmerFinder**

- · Genomes are spilt into 16-mers
  - 4.3 billion combinations
  - -~10.000 recognized spp.
  - -~600.000 bacterial operation taxonomic units.
- Only 16-mers with specific prefixes are kept e.g ATGAG
  - Reducing k-mers reduces size of database.
  - Speed-up computing time.
  - Reduces redundancy.
- But how does the tool the compare k-mers?







#### **KmerFinder webtool**

#### Select database

Bacteria organisms 🗘

#### Upload file(s)

To input the sequences, upload a single FASTA file, or one/two FASTQ file(s), or one interleaved FASTQ file on your local disk by using the applet below. Both assembled genome (in FASTA format) and raw reads single end or paired end (in FASTQ format) are supported. Gzipped FASTA/FASTQ files are also supported.

If you get an "Access forbidden. Error 403": Make sure the start of the web adress is https and not just http. Fix it by clicking here.

| R Choose File(s) |      |          |        |
|------------------|------|----------|--------|
| Name             | Size | Progress | Status |
|                  |      |          |        |
| O Upload         |      |          |        |
|                  |      |          |        |
|                  |      |          |        |
|                  |      |          |        |
|                  |      |          |        |



### **Subtyping of bacteria**

- Information of bacteria below species level
  - Outbreak detection, clusters, common contamination source, transmission routes...
  - E. coli/Salmonella traditional subtyping:
    - serotyping using antisera against the ca. 186 O-antigens and 53 H-flagellar antigens for *E. coli* or 46 O-antigens and 114 H-antigens for *Salmonella* (ca 2600 serovars).
      - Requires anti-sera and trained personnel.
      - Time consuming and not always accurate or inconclusive.
    - Phagetyping:
      - Golden standard method for surveillance of Salmonella Typhimurium and S.
      - Enteritidis also used for *E. coli* and other bacteria.
      - Requires a comprehensive panel of different phages, considerable technical expertise.
         The Fleming Fund | SeqAfrica



E. coli in scanning electron microscopic image, CDC/ Evangeline Sowers, Janice Haney Carr, 2005, Public domain image, <u>https://phil.cdc.gov/Details.gspx?pid=10042</u>



### **Genotypic determination of classical methods**

- E. coli serotyping:
- DTU developed tool:
- <u>https://cge.food.dtu.dk/services/SerotypeFinder/</u>
- Salmonella subtyping:
- DTU hosted tool:
- <u>https://cge.food.dtu.dk/services/SeqSero/</u>



#### SerotypeFinder 2.0

SerotypeFinder identifies the serotype in total or partial sequenced isolates of E. coli. Fasta file with test sequence: Test sequence

×

The database is curated by: Flemming Scheutz, SSI (click to contact)

Software version: 2.0.1 (2020-07-27) Database version: 1.0.0 (2022-05-16)

#### Select organism

| Select multiple items, | with Ctrl-Click | (or Cm | d-Click on Mac) |
|------------------------|-----------------|--------|-----------------|
| E. coli                |                 | ÷      |                 |

| Select | threshold | for | %ID |  |
|--------|-----------|-----|-----|--|
|        |           |     |     |  |

#### Select minimum length

The minimum length is the number of nucleotides a sequence must overlap a serotype gene to count as a hit for that gene. Here represented as a percentage of the total serotype gene length. ~

60 %

#### Select type of your reads

Only data from one single isolate should be uploaded. If raw sequencing reads are uploaded KMA will be used for mapping. KMA supports the following sequencing platforms: Illumina, Ion Torrent, Roche 454, SOLiD, Oxford Nanopore, and PacBio.

Assembled or Draft Genome/Contigs\* (fasta)

| 1solate File        |      |          |        |
|---------------------|------|----------|--------|
| Name                | Size | Progress | Status |
|                     |      |          |        |
|                     |      |          |        |
| A                   |      |          |        |
| C Upload III Remove |      |          |        |

#### SerotypeFinder 2.0 Output Guide



#### Graphical output example and explanation

Once the SerotypeFinder server has finished running the job you submitted, it will display an output similar to the below example:

| Deseture        |           | 0                   | H type                                                                                                               | 1                                       | Dendlated                             | Accession                                       |
|-----------------|-----------|---------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------|-------------------------------------------------|
| gene            | %Identity | length              | Contig                                                                                                               | Position in contig                      | serotype                              | number                                          |
| fliC            | 99.29     | 1263 /<br>1263      | NODE_52_length_319384_cov_88.843941                                                                                  | 140381141643                            | H10                                   | <u>AY249995</u>                                 |
|                 |           |                     | O type                                                                                                               |                                         |                                       |                                                 |
| erotype<br>gene | %Identity | Query/HSP<br>length | Contig                                                                                                               | Position in contig                      | Predicted<br>serotype                 | Accession<br>number                             |
|                 |           | 1290                |                                                                                                                      |                                         | 074                                   | -                                               |
| wzy             | 100.00    | 1290                | NODE_52_length_319384_cov_88.843941                                                                                  | 235455236744                            | 0/1                                   | <u>GU445927</u>                                 |
|                 |           | 1275                |                                                                                                                      |                                         |                                       |                                                 |
| WZX             | 100.00    | / 1275              | NODE_52_length_319384_cov_88.843941                                                                                  | 238149239423                            | 071                                   | GU445927                                        |
|                 |           |                     | Predicted Serotype: 071:H1                                                                                           | 0 <b>←</b> b) P                         | redicte                               | d serotype                                      |
|                 |           | Res                 | uits as text Results tab separated Hit in genome sequences Selected %ID threshold: 98.00                             | b) P<br>c) E<br>Serotype gene sequences | redicted<br>xtended<br>d)<br>Seroty   | d serotype<br>d output<br>Result op<br>peFinder |
|                 |           | Res                 | Vits as text Results tab separated Hit in genome sequences Selected %ID threshold: 98.00 Selected minimum length: 60 | b) P<br>c) E<br>Serotype gene sequences | redicted<br>xtended<br>d)<br>) Seroty | d serotype<br>d output<br>Result op<br>peFinder |
|                 |           | Res                 | Vits as text Results tab separated Hit in genome sequences Selected %ID threshold: 98.00 Selected minimum length: 60 | b) P<br>c) E<br>Serotype gene sequences | redicted<br>xtended<br>d)<br>) Seroty | d serotype<br>d output<br>Result op<br>peFinder |



### **Analysis of mobile genetic elements**

- PlasmidFinder.
  - Tool for identification of replicons
  - Plasmid replicons are divieded into incompability groups.
  - Plasmids which share the same replication mechanisms cannot be maintained in the same cell
  - Use fasta files as input to gain insight into linkage to AMR genes
- MGE (Mobile Genetic Element Finder)
  - Identifies MGEs in the genome
  - Provides information on virulence and AMR genes contained in identified MGEs
  - Takes fasta files as input



#### PlasmidFinder 2.1

| Software                                                                               | e version: 2.0.1 (20                                                                                                  | 20-07-01)                                                           |                                                |                                           |                               |                                          | The of          |                                                     |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------|-------------------------------------------|-------------------------------|------------------------------------------|-----------------|-----------------------------------------------------|
| Database                                                                               | e version: (2023-0                                                                                                    | 1-18)                                                               |                                                |                                           |                               |                                          | Henrik Hasm     | latabase is curated by:<br>1 an and Alessandra Cara |
| Test sequ                                                                              | uence                                                                                                                 |                                                                     |                                                |                                           |                               |                                          |                 | (click to contact)                                  |
| Select d                                                                               | atabase                                                                                                               |                                                                     |                                                |                                           |                               |                                          |                 |                                                     |
| Gram Po                                                                                | ositive                                                                                                               |                                                                     | <b>^</b>                                       |                                           |                               |                                          |                 |                                                     |
| Enterob                                                                                | acteriales                                                                                                            |                                                                     | -                                              |                                           |                               |                                          |                 |                                                     |
|                                                                                        |                                                                                                                       |                                                                     |                                                |                                           |                               |                                          |                 |                                                     |
| Salact th                                                                              | preshold for min                                                                                                      | imum % ider                                                         | ntity                                          |                                           |                               |                                          |                 |                                                     |
| Select u                                                                               |                                                                                                                       |                                                                     |                                                |                                           |                               |                                          |                 |                                                     |
| 95 %                                                                                   |                                                                                                                       |                                                                     | ~                                              |                                           |                               |                                          |                 |                                                     |
| 95 %                                                                                   |                                                                                                                       |                                                                     | ~                                              |                                           |                               |                                          |                 |                                                     |
| 95 %                                                                                   |                                                                                                                       |                                                                     | ~                                              |                                           |                               |                                          |                 |                                                     |
| 95 %                                                                                   | ninimum % cove                                                                                                        | rage                                                                | ~                                              |                                           |                               |                                          |                 |                                                     |
| 95 %<br>Select m<br>60 %                                                               | ninimum % cove                                                                                                        | rage                                                                | ~                                              |                                           |                               |                                          |                 |                                                     |
| 95 %<br>Select m                                                                       | ninimum % cove                                                                                                        | rage                                                                | ×<br>×                                         |                                           |                               |                                          |                 |                                                     |
| 95 %<br>Select m<br>60 %                                                               | ninimum % cove                                                                                                        | rage                                                                | ~                                              |                                           |                               |                                          |                 |                                                     |
| Select tr<br>95 %<br>Select m<br>60 %                                                  | ninimum % cover                                                                                                       | rage                                                                | <ul><li>✓</li></ul>                            |                                           |                               |                                          |                 |                                                     |
| Select tr<br>95 %<br>60 %<br>Select ty<br>Only dat                                     | ninimum % cover<br>/pe of your read:<br>a from one single                                                             | rage<br>s                                                           | ▼<br>✓                                         | raw sequencing                            | g reads are up                | oloaded KMA will b                       | be used for map | ping. KMA supports the                              |
| Select tr<br>95 %<br>Select m<br>60 %<br>Select ty<br>Only dat<br>following            | ninimum % cover<br>/pe of your reader<br>a from one single<br>g sequencing plat                                       | rage<br>s<br>isolate shoul<br>forms: Illumir                        | V<br>Id be uploaded. If                        | raw sequencing<br>che 454, SOLiD,         | g reads are up<br>Oxford Nanc | ploaded KMA will b<br>ppore, and PacBio. | be used for map | ping. KMA supports the                              |
| Select tr<br>95 %<br>Select tr<br>60 %<br>Select ty<br>Only dat<br>following<br>Assemb | ninimum % cover<br>ype of your reads<br>a from one single<br>g sequencing plat<br>led or Draft Geno                   | r <b>age</b><br>s<br>isolate shoul<br>forms: Illumir<br>me/Contigs* | V<br>Id be uploaded. If<br>na, Ion Torrent, Ro | raw sequencing<br>che 454, SOLiD,         | g reads are up<br>Oxford Nanc | ploaded KMA will k<br>ppore, and PacBio. | be used for map | ping. KMA supports the                              |
| Select tr<br>95 %<br>60 %<br>Select ty<br>Only dat<br>following<br>Assemb              | <b>inimum % cove</b><br><b>/pe of your read</b><br>a from one single<br>g sequencing plat<br>led or Draft Geno        | rage<br>s<br>isolate shoul<br>forms: Illumir<br>me/Contigs*         | V<br>Id be uploaded. If<br>na, Ion Torrent, Ro | raw sequencin <u>c</u><br>che 454, SOLiD, | g reads are up<br>Oxford Nanc | oloaded KMA will k<br>opore, and PacBio. | be used for map | ping. KMA supports the                              |
| Select tr<br>95 %<br>Select tr<br>Only dat<br>following<br>Assemb                      | ninimum % cover<br>/pe of your read:<br>a from one single<br>g sequencing plat<br>led or Draft Geno                   | r <b>age</b><br>s<br>isolate shoul<br>forms: Illumir<br>me/Contigs* | V<br>Id be uploaded. If<br>na, Ion Torrent, Ro | raw sequencing<br>che 454, SOLiD,         | g reads are up<br>Oxford Nanc | ploaded KMA will k<br>ppore, and PacBio. | be used for map | ping. KMA supports the                              |
| Select tr<br>95 %<br>Select tr<br>Only dat<br>following<br>Assemb                      | ninimum % cover<br>/pe of your read:<br>a from one single<br>g sequencing plat<br>led or Draft Geno                   | r <b>age</b><br>s<br>isolate shoul<br>forms: Illumir<br>me/Contigs* | V<br>Id be uploaded. If<br>na, Ion Torrent, Ro | raw sequencing<br>che 454, SOLiD,         | g reads are up<br>Oxford Nanc | oloaded KMA will b<br>opore, and PacBio. | be used for map | ping. KMA supports the                              |
| Select tr<br>95 %<br>Select tr<br>60 %<br>Select ty<br>Only dat<br>following<br>Assemb | ninimum % cover<br>ype of your read:<br>a from one single<br>g sequencing plat<br>led or Draft Gence<br>hoose File(s) | r <b>age</b><br>s isolate shoul<br>forms: Illumir<br>me/Contigs*    | V<br>Id be uploaded. If<br>na, Ion Torrent, Ro | raw sequencing<br>che 454, SOLiD,         | g reads are up<br>Oxford Nanc | oloaded KMA will k<br>opore, and PacBio. | be used for map | ping. KMA supports the                              |



If the replicon is found on the same contig as a AMR gene, it indicates the gene is on a plasmid

#### **PlasmidFinder-2.0 Server - Results**

#### Organism(s): Enterobacteriaceae

| Enterobacteriaceae, Acenitobacter baumannii |          |                            |                                     |                       |      |                     |  |  |  |  |
|---------------------------------------------|----------|----------------------------|-------------------------------------|-----------------------|------|---------------------|--|--|--|--|
| Plasmid                                     | Identity | Query / Template<br>length | Contig                              | Position in<br>contig | Note | Accession<br>number |  |  |  |  |
| IncFIB(AP001918)                            | 96.84    | 538 / 682                  | NODE_151_length_1547_cov_574.472534 | 1538                  |      | AP001918            |  |  |  |  |
| IncFII(pRSB107)                             | 97.7     | 261 / 261                  | NODE_103_length_1790_cov_579.962585 | 539799                |      | AJ851089            |  |  |  |  |
| Incl1-I(Gamma)                              | 97.89    | 142/142                    | NODE_266_length_500_cov_522.737976  | 61202                 |      | AP005147            |  |  |  |  |

extended output

#### Input Files: resfindertest.fa

Results as text Results tsv Hits in genome seqs Plasmid sequences

The database is curated by: Markus Johansson (click to contact)

# M<sup>obile</sup>Element Finder

Software version: v1.0.3 (2020-10-09) Database version: v1.0.2 (2020-06-09)

MobileElementFinder identifies mobile genetic elements and their relation to antimicrobial resistance genes and virulence factors.

Example sequence

#### Annotate accessory genes (Optional)

If you want to use databases currently not supported by MobileElementFinder, please download the mobile element sequences and upload them to the service of choice.

Acquired Antimicrobial Resistance genes (ResFinder)

Virulence genes (VirulenceFinder)

| Here Isolate File | Size | Progress | Status |
|-------------------|------|----------|--------|
| O Upload          |      |          |        |



|                       |                                                                                                                  | Customize filters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     |                  | -          |
|-----------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------|------------|
|                       | 1a. Display MGE types                                                                                            | Basic Elements<br>Small MGEs<br>MIC<br>MITE<br>Insertion Sequen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gene carrying MGEs C Unit-transposons C Composite Transposons ces   | Conjugative I    | MGEs       |
|                       | 1b. Prediction quality                                                                                           | Minimum alignmer<br>Minimum sequence<br>Maximum truncati<br>Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s                                                                   |                  |            |
|                       | 1c. Display special cases                                                                                        | <ul> <li>Show inferred tran</li> <li>Show MGEs that s</li> <li>Show elements with the second se</li></ul> | nsposon<br>span outside contig<br>ith one conserved end (regardless | s of truncation) |            |
| 2. Sample information | MGEFinder Result<br>Sample name: DTU2017<br>Date: 2020-04-0<br>MGEfinder version: 0.1.4<br>MGEdb version: 0.2.1a | t <b>S</b><br>/-818-contigs<br>07_11:41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |                  |            |
|                       | Displaying: 15 of 144 mobile                                                                                     | elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Plasmid                                                             | #MGEs            | Resistance |
|                       | NODE 10 length 1566                                                                                              | 00 cov 7.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , idointa                                                           | 1                | mdf(A)     |
| 3. Result overview    | NODE 94 length 2336                                                                                              | cov 10.495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     | 0                | sul2       |
|                       | NODE 72 length 7006                                                                                              | cov 10.258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     | 0                | tet(B)     |
|                       | NODE 54 length 1758                                                                                              | 4 cov 7.736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Incl1                                                               | 2                | tet(A)     |

| Contig result view     | Contig: NODE<br>Plasmid results                                                                                                                                                                     | _54_length_17           | 584_cov_7.7                                                                                                                                                | 3695_ID_6293                                                  | Coverage | Identity |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------|----------|
|                        | Incl1                                                                                                                                                                                               | Enterobacteriaceae      | AP005147                                                                                                                                                   | 7055-7196                                                     | 100%     | 99.3%    |
| 1. Genes on contig     | Resistance results<br>Gene name                                                                                                                                                                     | Phenotype               | Accession                                                                                                                                                  | Position in contig                                            | Coverage | Identity |
|                        | tet(A)                                                                                                                                                                                              | Tetracycline resistance | AJ517790                                                                                                                                                   | 12904-14103                                                   | 100%     | 100%     |
|                        | IS26                                                                                                                                                                                                |                         |                                                                                                                                                            |                                                               |          |          |
| 2. MGEs on contig      | Synonyms<br>Family<br>Type<br>Reference db<br>Accession<br>Position in contig<br>Strand<br>Read depth<br>Alignment coverage<br>Sequence identity<br>Num Substitutions<br>E-value<br>Show MGE alignm | ent                     | IS6,IS26L,IS26B,IS<br>IS6<br>Insertion sequence<br><u>isfinder</u><br><u>X00011</u><br>15498-16317<br>forward<br>7.74<br>100%; 820 / 820<br>100%<br>0<br>0 | S46,IS140,IS160                                               |          |          |
|                        | ISSbo1                                                                                                                                                                                              |                         |                                                                                                                                                            |                                                               |          |          |
| 2a. MGE information    | Family<br>Type<br>Reference db<br>Accession<br>Position in contig                                                                                                                                   |                         |                                                                                                                                                            | S91<br>nsertion sequence<br>stinder<br>CP001062<br>9195-10903 |          |          |
| 2b. Prediction metrics | Strand<br>Read depth<br>Alignment coverage<br>Sequence identity<br>Num Substitutions<br>E-value                                                                                                     | C                       |                                                                                                                                                            | orward<br>7.74<br>100%; 1709 / 1709<br>96.02%<br>88           |          |          |



#### Virulence **Finder**

- Detects virulence genes
- Virulence genes are genes • that help bacteria establish infections in their hosts.
- These genes encode • proteins that help bacteria colonize and survive in the host or damage the host.

|                      |                                        | ~ ~                    |                  |           |                 |                                                                           |
|----------------------|----------------------------------------|------------------------|------------------|-----------|-----------------|---------------------------------------------------------------------------|
| irulen               | ceFinder                               | 2.0                    |                  |           |                 |                                                                           |
| Service              | Instructions                           | Output                 | Article abstract | Citations | Version history |                                                                           |
|                      |                                        |                        |                  |           |                 |                                                                           |
| Software<br>Database | version: 2.0.5 (2<br>e version: (2022- | 2024-01-31)<br>-12-02) |                  |           |                 | The database is curated by<br>Flemming Scheutz, SSI<br>(click to contact) |
| Select s             | pecies                                 |                        |                  |           |                 |                                                                           |
| S. aureus            | s<br>hia coli                          |                        | _                |           |                 |                                                                           |
| Enteroco             |                                        |                        |                  |           |                 |                                                                           |
| Enteroco             | occus faecium &                        | Enterococc             | us la            |           |                 |                                                                           |
| Select th            | nreshold for %II                       | D                      |                  |           |                 |                                                                           |
| 90 %                 |                                        |                        | $\bigcirc$       |           |                 |                                                                           |
| Select m             | inimum length                          |                        |                  |           |                 |                                                                           |
| 60 %                 |                                        |                        | $\bigcirc$       |           |                 |                                                                           |
| Select ty            | ne of your read                        | le                     |                  |           |                 |                                                                           |

#### Select type of your reads

V

Only data from one single isolate should be uploaded. If raw sequencing reads are uploaded KMA will be used for mapping. KMA supports the following sequencing platforms: Illumina, Ion Torrent, Roche 454, SOLiD, Oxford Nanopore, and PacBio. Assembled or Draft Genome/Contigs\* (fasta) 📀

| Г |                  |      |      |          |        |  |
|---|------------------|------|------|----------|--------|--|
|   | R Choose File(s) |      |      |          |        |  |
|   | Name             |      | Size | Progress | Status |  |
|   |                  | <br> |      |          |        |  |



#### VirulenceFinder-1.2 Server - Results

#### SETTINGS:

Selected %ID threshold: 98.00

|                                                                                | Virulence - E. coli |                     |                                     |                       |                                             |                     |  |  |  |  |
|--------------------------------------------------------------------------------|---------------------|---------------------|-------------------------------------|-----------------------|---------------------------------------------|---------------------|--|--|--|--|
| Virulence<br>factor                                                            | %Identity           | Query/HSP<br>length | Contig                              | Position in<br>contig | Protein<br>function                         | Accession<br>number |  |  |  |  |
| mcmA                                                                           | 99.64               | 279 /<br>279        | NODE_17_length_48340_cov_62.616714  | 4090941187            | Microcin M<br>part of<br>colicin H          | <u>AJ515251</u>     |  |  |  |  |
| lpfA                                                                           | 100.00              | 573 /<br>573        | NODE_4_length_115337_cov_62.053581  | 8485785429            | Long polar<br>fimbriae                      | KC207123            |  |  |  |  |
| iss                                                                            | 99.71               | 342 /<br>342        | NODE_195_length_89121_cov_54.610832 | 8770188042            | Increased<br>serum<br>survival              | <u>CU928160</u>     |  |  |  |  |
| prfB                                                                           | 100.00              | 882 /<br>882        | NODE_75_length_157387_cov_57.585850 | 9432495205            | P-related<br>fimbriae<br>regulatory<br>gene | <u>CP002970</u>     |  |  |  |  |
| extended output                                                                |                     |                     |                                     |                       |                                             |                     |  |  |  |  |
| as text Results tab separated Hit in genome sequences Virulence gene sequences |                     |                     |                                     |                       |                                             |                     |  |  |  |  |
| iles: E                                                                        | C19_201             | 1_70_34_            | _3-illumina_pe_velvet1.1.04_k       | mer63_cov5            | 7_cut0.fna                                  |                     |  |  |  |  |



### **Sequence identity**

- A term we encounter in the cge tools is % identity (ID)
- The identity describes how many bases of the aligned sequences are identical
- Given the alignment:

# GGGGATCGTTTACGTCGTCTGACCGCCGGTATTTGCCTGATAACACAAACTATTTTCCCT



### **Sequence identity**

- A term we encounter in the cge tools is % identity (ID)
- The identity describes how many bases of the aligned sequences are identical
- Given the alignment:
- Sequence length 60

# GGGGATCGTTTACGTCGTCTGACCGCCGGTATTTGCCTGATAACACAAACTATTTTCCCT

- Matches 59
- %ID = 59/60\*100% = 98.3%



### Sequence coverage

- The term sequence % coverage (COV) refers to the proportion of covered gene
- Given the alignment:

## GGGGATCGTTTACGTCGTCTGACCGCCGGTATTTGCCTGATAACACAAACTATTTTCCCT

- Sequence length 60
- Covered positions are 27
- %COV = 27/60\*100% = 45.0%



### Let's take a break 😳



## Thank you



This programme is being funded by the UK Department of Health and Social Care. The views expressed do not necessarily reflect the UK Government's official policies.

